Properties

Label 3168.2.d.c.287.11
Level $3168$
Weight $2$
Character 3168.287
Analytic conductor $25.297$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3168,2,Mod(287,3168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3168.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.46138325148368896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 32x^{8} + 240x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.11
Root \(-1.49547 + 1.49547i\) of defining polynomial
Character \(\chi\) \(=\) 3168.287
Dual form 3168.2.d.c.287.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.99093i q^{5} +2.08290i q^{7} -1.00000 q^{11} -1.57672 q^{13} -7.13784i q^{17} -3.45185i q^{19} -8.81890 q^{23} -3.94567 q^{25} -1.62388i q^{29} +1.93330i q^{31} -6.22982 q^{35} -8.09910 q^{37} -8.60593i q^{41} +0.713951i q^{43} +0.653098 q^{47} +2.66152 q^{49} +2.90040i q^{53} -2.99093i q^{55} -2.98763 q^{59} +11.2556 q^{61} -4.71585i q^{65} +4.53100i q^{67} -16.4510 q^{71} -1.72822 q^{73} -2.08290i q^{77} -3.57395i q^{79} +14.1935 q^{83} +21.3488 q^{85} -16.6429i q^{89} -3.28415i q^{91} +10.3243 q^{95} +10.5614 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{11} - 24 q^{23} - 4 q^{25} - 24 q^{35} - 16 q^{37} - 24 q^{47} - 4 q^{49} - 48 q^{59} - 8 q^{61} - 72 q^{71} - 16 q^{73} - 24 q^{83} + 40 q^{85} - 40 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.99093i 1.33758i 0.743449 + 0.668792i \(0.233189\pi\)
−0.743449 + 0.668792i \(0.766811\pi\)
\(6\) 0 0
\(7\) 2.08290i 0.787263i 0.919268 + 0.393631i \(0.128781\pi\)
−0.919268 + 0.393631i \(0.871219\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.57672 −0.437303 −0.218651 0.975803i \(-0.570166\pi\)
−0.218651 + 0.975803i \(0.570166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7.13784i − 1.73118i −0.500752 0.865591i \(-0.666943\pi\)
0.500752 0.865591i \(-0.333057\pi\)
\(18\) 0 0
\(19\) − 3.45185i − 0.791909i −0.918270 0.395955i \(-0.870414\pi\)
0.918270 0.395955i \(-0.129586\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.81890 −1.83887 −0.919434 0.393244i \(-0.871353\pi\)
−0.919434 + 0.393244i \(0.871353\pi\)
\(24\) 0 0
\(25\) −3.94567 −0.789134
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1.62388i − 0.301547i −0.988568 0.150774i \(-0.951824\pi\)
0.988568 0.150774i \(-0.0481765\pi\)
\(30\) 0 0
\(31\) 1.93330i 0.347231i 0.984814 + 0.173615i \(0.0555450\pi\)
−0.984814 + 0.173615i \(0.944455\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.22982 −1.05303
\(36\) 0 0
\(37\) −8.09910 −1.33148 −0.665742 0.746182i \(-0.731885\pi\)
−0.665742 + 0.746182i \(0.731885\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 8.60593i − 1.34402i −0.740542 0.672010i \(-0.765431\pi\)
0.740542 0.672010i \(-0.234569\pi\)
\(42\) 0 0
\(43\) 0.713951i 0.108877i 0.998517 + 0.0544383i \(0.0173368\pi\)
−0.998517 + 0.0544383i \(0.982663\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.653098 0.0952641 0.0476320 0.998865i \(-0.484833\pi\)
0.0476320 + 0.998865i \(0.484833\pi\)
\(48\) 0 0
\(49\) 2.66152 0.380217
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.90040i 0.398401i 0.979959 + 0.199201i \(0.0638345\pi\)
−0.979959 + 0.199201i \(0.936165\pi\)
\(54\) 0 0
\(55\) − 2.99093i − 0.403297i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.98763 −0.388956 −0.194478 0.980907i \(-0.562301\pi\)
−0.194478 + 0.980907i \(0.562301\pi\)
\(60\) 0 0
\(61\) 11.2556 1.44113 0.720567 0.693385i \(-0.243881\pi\)
0.720567 + 0.693385i \(0.243881\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 4.71585i − 0.584930i
\(66\) 0 0
\(67\) 4.53100i 0.553549i 0.960935 + 0.276775i \(0.0892656\pi\)
−0.960935 + 0.276775i \(0.910734\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.4510 −1.95238 −0.976188 0.216925i \(-0.930397\pi\)
−0.976188 + 0.216925i \(0.930397\pi\)
\(72\) 0 0
\(73\) −1.72822 −0.202273 −0.101137 0.994873i \(-0.532248\pi\)
−0.101137 + 0.994873i \(0.532248\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.08290i − 0.237369i
\(78\) 0 0
\(79\) − 3.57395i − 0.402101i −0.979581 0.201051i \(-0.935564\pi\)
0.979581 0.201051i \(-0.0644355\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.1935 1.55794 0.778972 0.627059i \(-0.215742\pi\)
0.778972 + 0.627059i \(0.215742\pi\)
\(84\) 0 0
\(85\) 21.3488 2.31560
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 16.6429i − 1.76415i −0.471112 0.882073i \(-0.656147\pi\)
0.471112 0.882073i \(-0.343853\pi\)
\(90\) 0 0
\(91\) − 3.28415i − 0.344272i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.3243 1.05925
\(96\) 0 0
\(97\) 10.5614 1.07235 0.536175 0.844107i \(-0.319869\pi\)
0.536175 + 0.844107i \(0.319869\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.74381i − 0.173516i −0.996229 0.0867579i \(-0.972349\pi\)
0.996229 0.0867579i \(-0.0276507\pi\)
\(102\) 0 0
\(103\) − 18.3243i − 1.80554i −0.430121 0.902771i \(-0.641529\pi\)
0.430121 0.902771i \(-0.358471\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.64717 −0.835954 −0.417977 0.908458i \(-0.637261\pi\)
−0.417977 + 0.908458i \(0.637261\pi\)
\(108\) 0 0
\(109\) 3.06777 0.293839 0.146919 0.989148i \(-0.453064\pi\)
0.146919 + 0.989148i \(0.453064\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.733452i 0.0689973i 0.999405 + 0.0344987i \(0.0109834\pi\)
−0.999405 + 0.0344987i \(0.989017\pi\)
\(114\) 0 0
\(115\) − 26.3767i − 2.45964i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.8674 1.36289
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.15343i 0.282052i
\(126\) 0 0
\(127\) 13.1108i 1.16340i 0.813404 + 0.581699i \(0.197612\pi\)
−0.813404 + 0.581699i \(0.802388\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.2395 −0.981999 −0.491000 0.871160i \(-0.663368\pi\)
−0.491000 + 0.871160i \(0.663368\pi\)
\(132\) 0 0
\(133\) 7.18987 0.623441
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.7470i 1.51623i 0.652120 + 0.758116i \(0.273880\pi\)
−0.652120 + 0.758116i \(0.726120\pi\)
\(138\) 0 0
\(139\) 6.89911i 0.585175i 0.956239 + 0.292588i \(0.0945163\pi\)
−0.956239 + 0.292588i \(0.905484\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.57672 0.131852
\(144\) 0 0
\(145\) 4.85692 0.403345
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 15.8174i − 1.29581i −0.761720 0.647907i \(-0.775645\pi\)
0.761720 0.647907i \(-0.224355\pi\)
\(150\) 0 0
\(151\) − 7.05899i − 0.574453i −0.957863 0.287226i \(-0.907267\pi\)
0.957863 0.287226i \(-0.0927332\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.78236 −0.464451
\(156\) 0 0
\(157\) 9.89885 0.790014 0.395007 0.918678i \(-0.370742\pi\)
0.395007 + 0.918678i \(0.370742\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 18.3689i − 1.44767i
\(162\) 0 0
\(163\) − 14.4078i − 1.12851i −0.825602 0.564253i \(-0.809164\pi\)
0.825602 0.564253i \(-0.190836\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.0622 −1.62984 −0.814919 0.579575i \(-0.803219\pi\)
−0.814919 + 0.579575i \(0.803219\pi\)
\(168\) 0 0
\(169\) −10.5140 −0.808766
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 20.0720i 1.52604i 0.646373 + 0.763022i \(0.276285\pi\)
−0.646373 + 0.763022i \(0.723715\pi\)
\(174\) 0 0
\(175\) − 8.21844i − 0.621256i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.1295 −1.20558 −0.602789 0.797901i \(-0.705944\pi\)
−0.602789 + 0.797901i \(0.705944\pi\)
\(180\) 0 0
\(181\) −10.0964 −0.750460 −0.375230 0.926932i \(-0.622436\pi\)
−0.375230 + 0.926932i \(0.622436\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 24.2239i − 1.78097i
\(186\) 0 0
\(187\) 7.13784i 0.521971i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.946925 0.0685171 0.0342585 0.999413i \(-0.489093\pi\)
0.0342585 + 0.999413i \(0.489093\pi\)
\(192\) 0 0
\(193\) −3.94817 −0.284195 −0.142098 0.989853i \(-0.545385\pi\)
−0.142098 + 0.989853i \(0.545385\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.33147i − 0.166110i −0.996545 0.0830550i \(-0.973532\pi\)
0.996545 0.0830550i \(-0.0264677\pi\)
\(198\) 0 0
\(199\) 0.187545i 0.0132947i 0.999978 + 0.00664734i \(0.00211593\pi\)
−0.999978 + 0.00664734i \(0.997884\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.38239 0.237397
\(204\) 0 0
\(205\) 25.7398 1.79774
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.45185i 0.238770i
\(210\) 0 0
\(211\) 13.1142i 0.902821i 0.892316 + 0.451411i \(0.149079\pi\)
−0.892316 + 0.451411i \(0.850921\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.13538 −0.145632
\(216\) 0 0
\(217\) −4.02687 −0.273362
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 11.2544i 0.757050i
\(222\) 0 0
\(223\) − 11.3282i − 0.758595i −0.925275 0.379298i \(-0.876166\pi\)
0.925275 0.379298i \(-0.123834\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.9096 −0.790467 −0.395233 0.918581i \(-0.629336\pi\)
−0.395233 + 0.918581i \(0.629336\pi\)
\(228\) 0 0
\(229\) 18.2109 1.20341 0.601706 0.798718i \(-0.294488\pi\)
0.601706 + 0.798718i \(0.294488\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.13476i 0.139853i 0.997552 + 0.0699265i \(0.0222765\pi\)
−0.997552 + 0.0699265i \(0.977724\pi\)
\(234\) 0 0
\(235\) 1.95337i 0.127424i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.58635 −0.490720 −0.245360 0.969432i \(-0.578906\pi\)
−0.245360 + 0.969432i \(0.578906\pi\)
\(240\) 0 0
\(241\) −16.4260 −1.05809 −0.529047 0.848592i \(-0.677451\pi\)
−0.529047 + 0.848592i \(0.677451\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.96042i 0.508573i
\(246\) 0 0
\(247\) 5.44260i 0.346304i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.0399 0.633714 0.316857 0.948473i \(-0.397373\pi\)
0.316857 + 0.948473i \(0.397373\pi\)
\(252\) 0 0
\(253\) 8.81890 0.554440
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 8.99868i − 0.561322i −0.959807 0.280661i \(-0.909446\pi\)
0.959807 0.280661i \(-0.0905537\pi\)
\(258\) 0 0
\(259\) − 16.8696i − 1.04823i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −21.5193 −1.32693 −0.663467 0.748205i \(-0.730916\pi\)
−0.663467 + 0.748205i \(0.730916\pi\)
\(264\) 0 0
\(265\) −8.67491 −0.532895
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 8.37240i − 0.510474i −0.966878 0.255237i \(-0.917846\pi\)
0.966878 0.255237i \(-0.0821536\pi\)
\(270\) 0 0
\(271\) − 21.2118i − 1.28852i −0.764806 0.644261i \(-0.777165\pi\)
0.764806 0.644261i \(-0.222835\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.94567 0.237933
\(276\) 0 0
\(277\) 17.0184 1.02254 0.511270 0.859420i \(-0.329175\pi\)
0.511270 + 0.859420i \(0.329175\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 25.8020i − 1.53922i −0.638516 0.769608i \(-0.720452\pi\)
0.638516 0.769608i \(-0.279548\pi\)
\(282\) 0 0
\(283\) 2.33051i 0.138535i 0.997598 + 0.0692673i \(0.0220661\pi\)
−0.997598 + 0.0692673i \(0.977934\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.9253 1.05810
\(288\) 0 0
\(289\) −33.9488 −1.99699
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 26.2571i − 1.53396i −0.641672 0.766979i \(-0.721759\pi\)
0.641672 0.766979i \(-0.278241\pi\)
\(294\) 0 0
\(295\) − 8.93580i − 0.520262i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.9049 0.804142
\(300\) 0 0
\(301\) −1.48709 −0.0857145
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 33.6648i 1.92764i
\(306\) 0 0
\(307\) 25.6576i 1.46435i 0.681114 + 0.732177i \(0.261496\pi\)
−0.681114 + 0.732177i \(0.738504\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.5969 −0.771012 −0.385506 0.922705i \(-0.625973\pi\)
−0.385506 + 0.922705i \(0.625973\pi\)
\(312\) 0 0
\(313\) −13.0668 −0.738580 −0.369290 0.929314i \(-0.620399\pi\)
−0.369290 + 0.929314i \(0.620399\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 11.9511i − 0.671240i −0.941997 0.335620i \(-0.891054\pi\)
0.941997 0.335620i \(-0.108946\pi\)
\(318\) 0 0
\(319\) 1.62388i 0.0909199i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.6388 −1.37094
\(324\) 0 0
\(325\) 6.22120 0.345090
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.36034i 0.0749979i
\(330\) 0 0
\(331\) 29.9793i 1.64781i 0.566728 + 0.823905i \(0.308209\pi\)
−0.566728 + 0.823905i \(0.691791\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.5519 −0.740419
\(336\) 0 0
\(337\) −30.9771 −1.68743 −0.843715 0.536791i \(-0.819636\pi\)
−0.843715 + 0.536791i \(0.819636\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 1.93330i − 0.104694i
\(342\) 0 0
\(343\) 20.1240i 1.08659i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.1494 0.544851 0.272425 0.962177i \(-0.412174\pi\)
0.272425 + 0.962177i \(0.412174\pi\)
\(348\) 0 0
\(349\) −8.71592 −0.466553 −0.233276 0.972410i \(-0.574945\pi\)
−0.233276 + 0.972410i \(0.574945\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.8052i 0.947673i 0.880613 + 0.473837i \(0.157131\pi\)
−0.880613 + 0.473837i \(0.842869\pi\)
\(354\) 0 0
\(355\) − 49.2039i − 2.61147i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.2943 1.12387 0.561935 0.827182i \(-0.310057\pi\)
0.561935 + 0.827182i \(0.310057\pi\)
\(360\) 0 0
\(361\) 7.08472 0.372880
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 5.16899i − 0.270557i
\(366\) 0 0
\(367\) − 20.5255i − 1.07142i −0.844402 0.535710i \(-0.820044\pi\)
0.844402 0.535710i \(-0.179956\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.04126 −0.313646
\(372\) 0 0
\(373\) 4.05809 0.210120 0.105060 0.994466i \(-0.466497\pi\)
0.105060 + 0.994466i \(0.466497\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.56040i 0.131867i
\(378\) 0 0
\(379\) 15.3705i 0.789532i 0.918782 + 0.394766i \(0.129174\pi\)
−0.918782 + 0.394766i \(0.870826\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.38151 0.0705919 0.0352959 0.999377i \(-0.488763\pi\)
0.0352959 + 0.999377i \(0.488763\pi\)
\(384\) 0 0
\(385\) 6.22982 0.317501
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 2.33711i − 0.118496i −0.998243 0.0592482i \(-0.981130\pi\)
0.998243 0.0592482i \(-0.0188703\pi\)
\(390\) 0 0
\(391\) 62.9479i 3.18341i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.6894 0.537844
\(396\) 0 0
\(397\) −4.67491 −0.234627 −0.117314 0.993095i \(-0.537428\pi\)
−0.117314 + 0.993095i \(0.537428\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 20.4421i − 1.02083i −0.859928 0.510416i \(-0.829491\pi\)
0.859928 0.510416i \(-0.170509\pi\)
\(402\) 0 0
\(403\) − 3.04827i − 0.151845i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.09910 0.401458
\(408\) 0 0
\(409\) −10.7558 −0.531838 −0.265919 0.963995i \(-0.585675\pi\)
−0.265919 + 0.963995i \(0.585675\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 6.22294i − 0.306211i
\(414\) 0 0
\(415\) 42.4519i 2.08388i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.8737 −1.21516 −0.607579 0.794259i \(-0.707859\pi\)
−0.607579 + 0.794259i \(0.707859\pi\)
\(420\) 0 0
\(421\) −21.2498 −1.03565 −0.517827 0.855485i \(-0.673259\pi\)
−0.517827 + 0.855485i \(0.673259\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 28.1636i 1.36613i
\(426\) 0 0
\(427\) 23.4443i 1.13455i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.2450 0.734327 0.367163 0.930156i \(-0.380329\pi\)
0.367163 + 0.930156i \(0.380329\pi\)
\(432\) 0 0
\(433\) −5.23832 −0.251738 −0.125869 0.992047i \(-0.540172\pi\)
−0.125869 + 0.992047i \(0.540172\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.4415i 1.45622i
\(438\) 0 0
\(439\) 28.8286i 1.37592i 0.725751 + 0.687958i \(0.241492\pi\)
−0.725751 + 0.687958i \(0.758508\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.0107 −0.713180 −0.356590 0.934261i \(-0.616061\pi\)
−0.356590 + 0.934261i \(0.616061\pi\)
\(444\) 0 0
\(445\) 49.7778 2.35970
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 20.1873i − 0.952698i −0.879256 0.476349i \(-0.841960\pi\)
0.879256 0.476349i \(-0.158040\pi\)
\(450\) 0 0
\(451\) 8.60593i 0.405238i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.82266 0.460493
\(456\) 0 0
\(457\) −13.5340 −0.633095 −0.316548 0.948577i \(-0.602524\pi\)
−0.316548 + 0.948577i \(0.602524\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.00376i 0.233048i 0.993188 + 0.116524i \(0.0371752\pi\)
−0.993188 + 0.116524i \(0.962825\pi\)
\(462\) 0 0
\(463\) − 18.0976i − 0.841066i −0.907277 0.420533i \(-0.861843\pi\)
0.907277 0.420533i \(-0.138157\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 41.4264 1.91698 0.958492 0.285118i \(-0.0920329\pi\)
0.958492 + 0.285118i \(0.0920329\pi\)
\(468\) 0 0
\(469\) −9.43762 −0.435789
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 0.713951i − 0.0328275i
\(474\) 0 0
\(475\) 13.6199i 0.624922i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.2146 0.603791 0.301895 0.953341i \(-0.402381\pi\)
0.301895 + 0.953341i \(0.402381\pi\)
\(480\) 0 0
\(481\) 12.7700 0.582262
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 31.5885i 1.43436i
\(486\) 0 0
\(487\) − 23.3624i − 1.05865i −0.848419 0.529325i \(-0.822445\pi\)
0.848419 0.529325i \(-0.177555\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.61387 −0.253350 −0.126675 0.991944i \(-0.540431\pi\)
−0.126675 + 0.991944i \(0.540431\pi\)
\(492\) 0 0
\(493\) −11.5910 −0.522033
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 34.2659i − 1.53703i
\(498\) 0 0
\(499\) − 34.0326i − 1.52351i −0.647867 0.761753i \(-0.724339\pi\)
0.647867 0.761753i \(-0.275661\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.1962 −1.52473 −0.762366 0.647147i \(-0.775962\pi\)
−0.762366 + 0.647147i \(0.775962\pi\)
\(504\) 0 0
\(505\) 5.21562 0.232092
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.6870i 0.739639i 0.929104 + 0.369819i \(0.120580\pi\)
−0.929104 + 0.369819i \(0.879420\pi\)
\(510\) 0 0
\(511\) − 3.59972i − 0.159242i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 54.8066 2.41507
\(516\) 0 0
\(517\) −0.653098 −0.0287232
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 35.9579i − 1.57534i −0.616096 0.787671i \(-0.711287\pi\)
0.616096 0.787671i \(-0.288713\pi\)
\(522\) 0 0
\(523\) − 23.7836i − 1.03998i −0.854171 0.519992i \(-0.825935\pi\)
0.854171 0.519992i \(-0.174065\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.7996 0.601120
\(528\) 0 0
\(529\) 54.7730 2.38144
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 13.5691i 0.587744i
\(534\) 0 0
\(535\) − 25.8631i − 1.11816i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.66152 −0.114640
\(540\) 0 0
\(541\) −20.3186 −0.873566 −0.436783 0.899567i \(-0.643882\pi\)
−0.436783 + 0.899567i \(0.643882\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.17548i 0.393035i
\(546\) 0 0
\(547\) − 27.0193i − 1.15526i −0.816298 0.577631i \(-0.803977\pi\)
0.816298 0.577631i \(-0.196023\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.60540 −0.238798
\(552\) 0 0
\(553\) 7.44419 0.316559
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.0131i 0.720868i 0.932785 + 0.360434i \(0.117371\pi\)
−0.932785 + 0.360434i \(0.882629\pi\)
\(558\) 0 0
\(559\) − 1.12570i − 0.0476120i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 45.5313 1.91891 0.959457 0.281854i \(-0.0909495\pi\)
0.959457 + 0.281854i \(0.0909495\pi\)
\(564\) 0 0
\(565\) −2.19370 −0.0922898
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.1396i 1.34736i 0.739022 + 0.673681i \(0.235288\pi\)
−0.739022 + 0.673681i \(0.764712\pi\)
\(570\) 0 0
\(571\) − 45.2462i − 1.89349i −0.321977 0.946747i \(-0.604347\pi\)
0.321977 0.946747i \(-0.395653\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 34.7965 1.45111
\(576\) 0 0
\(577\) −37.9294 −1.57902 −0.789511 0.613736i \(-0.789666\pi\)
−0.789511 + 0.613736i \(0.789666\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 29.5637i 1.22651i
\(582\) 0 0
\(583\) − 2.90040i − 0.120122i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.1849 1.74116 0.870579 0.492028i \(-0.163744\pi\)
0.870579 + 0.492028i \(0.163744\pi\)
\(588\) 0 0
\(589\) 6.67346 0.274975
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.00034i 0.328535i 0.986416 + 0.164267i \(0.0525260\pi\)
−0.986416 + 0.164267i \(0.947474\pi\)
\(594\) 0 0
\(595\) 44.4675i 1.82299i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −15.5125 −0.633823 −0.316911 0.948455i \(-0.602646\pi\)
−0.316911 + 0.948455i \(0.602646\pi\)
\(600\) 0 0
\(601\) 18.1148 0.738919 0.369459 0.929247i \(-0.379543\pi\)
0.369459 + 0.929247i \(0.379543\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.99093i 0.121599i
\(606\) 0 0
\(607\) − 14.4660i − 0.587155i −0.955935 0.293578i \(-0.905154\pi\)
0.955935 0.293578i \(-0.0948459\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.02975 −0.0416592
\(612\) 0 0
\(613\) −6.44130 −0.260162 −0.130081 0.991503i \(-0.541524\pi\)
−0.130081 + 0.991503i \(0.541524\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.3378i 0.778510i 0.921130 + 0.389255i \(0.127268\pi\)
−0.921130 + 0.389255i \(0.872732\pi\)
\(618\) 0 0
\(619\) 36.3327i 1.46033i 0.683268 + 0.730167i \(0.260558\pi\)
−0.683268 + 0.730167i \(0.739442\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 34.6656 1.38885
\(624\) 0 0
\(625\) −29.1600 −1.16640
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 57.8101i 2.30504i
\(630\) 0 0
\(631\) 27.0088i 1.07520i 0.843199 + 0.537602i \(0.180670\pi\)
−0.843199 + 0.537602i \(0.819330\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −39.2136 −1.55614
\(636\) 0 0
\(637\) −4.19647 −0.166270
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5982i 0.616090i 0.951372 + 0.308045i \(0.0996748\pi\)
−0.951372 + 0.308045i \(0.900325\pi\)
\(642\) 0 0
\(643\) 17.8524i 0.704032i 0.935994 + 0.352016i \(0.114504\pi\)
−0.935994 + 0.352016i \(0.885496\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.2185 0.637615 0.318808 0.947819i \(-0.396718\pi\)
0.318808 + 0.947819i \(0.396718\pi\)
\(648\) 0 0
\(649\) 2.98763 0.117275
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.8194i 1.20606i 0.797720 + 0.603029i \(0.206040\pi\)
−0.797720 + 0.603029i \(0.793960\pi\)
\(654\) 0 0
\(655\) − 33.6166i − 1.31351i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.1757 0.474297 0.237148 0.971473i \(-0.423787\pi\)
0.237148 + 0.971473i \(0.423787\pi\)
\(660\) 0 0
\(661\) 29.0695 1.13067 0.565336 0.824860i \(-0.308746\pi\)
0.565336 + 0.824860i \(0.308746\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 21.5044i 0.833905i
\(666\) 0 0
\(667\) 14.3209i 0.554506i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.2556 −0.434518
\(672\) 0 0
\(673\) 24.2877 0.936221 0.468110 0.883670i \(-0.344935\pi\)
0.468110 + 0.883670i \(0.344935\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.66133i 0.0638500i 0.999490 + 0.0319250i \(0.0101638\pi\)
−0.999490 + 0.0319250i \(0.989836\pi\)
\(678\) 0 0
\(679\) 21.9984i 0.844221i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −42.1449 −1.61263 −0.806314 0.591488i \(-0.798541\pi\)
−0.806314 + 0.591488i \(0.798541\pi\)
\(684\) 0 0
\(685\) −53.0802 −2.02809
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 4.57312i − 0.174222i
\(690\) 0 0
\(691\) − 25.8144i − 0.982028i −0.871152 0.491014i \(-0.836626\pi\)
0.871152 0.491014i \(-0.163374\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.6348 −0.782722
\(696\) 0 0
\(697\) −61.4278 −2.32674
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 8.96034i − 0.338428i −0.985579 0.169214i \(-0.945877\pi\)
0.985579 0.169214i \(-0.0541228\pi\)
\(702\) 0 0
\(703\) 27.9569i 1.05441i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.63219 0.136603
\(708\) 0 0
\(709\) −13.4121 −0.503701 −0.251851 0.967766i \(-0.581039\pi\)
−0.251851 + 0.967766i \(0.581039\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 17.0496i − 0.638512i
\(714\) 0 0
\(715\) 4.71585i 0.176363i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.6652 0.435037 0.217519 0.976056i \(-0.430204\pi\)
0.217519 + 0.976056i \(0.430204\pi\)
\(720\) 0 0
\(721\) 38.1676 1.42144
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.40730i 0.237961i
\(726\) 0 0
\(727\) 18.6737i 0.692571i 0.938129 + 0.346285i \(0.112557\pi\)
−0.938129 + 0.346285i \(0.887443\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.09607 0.188485
\(732\) 0 0
\(733\) −47.8113 −1.76595 −0.882975 0.469420i \(-0.844463\pi\)
−0.882975 + 0.469420i \(0.844463\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 4.53100i − 0.166901i
\(738\) 0 0
\(739\) 22.8533i 0.840672i 0.907369 + 0.420336i \(0.138088\pi\)
−0.907369 + 0.420336i \(0.861912\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0857 0.443381 0.221690 0.975117i \(-0.428843\pi\)
0.221690 + 0.975117i \(0.428843\pi\)
\(744\) 0 0
\(745\) 47.3088 1.73326
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 18.0112i − 0.658115i
\(750\) 0 0
\(751\) − 18.6694i − 0.681255i −0.940198 0.340628i \(-0.889360\pi\)
0.940198 0.340628i \(-0.110640\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.1130 0.768379
\(756\) 0 0
\(757\) −34.5937 −1.25733 −0.628664 0.777677i \(-0.716398\pi\)
−0.628664 + 0.777677i \(0.716398\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.73270i 0.135310i 0.997709 + 0.0676552i \(0.0215518\pi\)
−0.997709 + 0.0676552i \(0.978448\pi\)
\(762\) 0 0
\(763\) 6.38986i 0.231328i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.71065 0.170092
\(768\) 0 0
\(769\) −23.2455 −0.838254 −0.419127 0.907928i \(-0.637664\pi\)
−0.419127 + 0.907928i \(0.637664\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.99987i 0.215800i 0.994162 + 0.107900i \(0.0344127\pi\)
−0.994162 + 0.107900i \(0.965587\pi\)
\(774\) 0 0
\(775\) − 7.62816i − 0.274011i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −29.7064 −1.06434
\(780\) 0 0
\(781\) 16.4510 0.588664
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.6068i 1.05671i
\(786\) 0 0
\(787\) 23.1331i 0.824607i 0.911047 + 0.412303i \(0.135276\pi\)
−0.911047 + 0.412303i \(0.864724\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.52771 −0.0543190
\(792\) 0 0
\(793\) −17.7469 −0.630212
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.3172i 0.825939i 0.910745 + 0.412969i \(0.135508\pi\)
−0.910745 + 0.412969i \(0.864492\pi\)
\(798\) 0 0
\(799\) − 4.66171i − 0.164919i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.72822 0.0609876
\(804\) 0 0
\(805\) 54.9401 1.93638
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.3590i 0.997049i 0.866876 + 0.498525i \(0.166125\pi\)
−0.866876 + 0.498525i \(0.833875\pi\)
\(810\) 0 0
\(811\) 29.6158i 1.03995i 0.854181 + 0.519976i \(0.174059\pi\)
−0.854181 + 0.519976i \(0.825941\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 43.0927 1.50947
\(816\) 0 0
\(817\) 2.46445 0.0862203
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 51.8681i − 1.81021i −0.425188 0.905105i \(-0.639792\pi\)
0.425188 0.905105i \(-0.360208\pi\)
\(822\) 0 0
\(823\) 12.4583i 0.434269i 0.976142 + 0.217134i \(0.0696710\pi\)
−0.976142 + 0.217134i \(0.930329\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −46.9241 −1.63171 −0.815856 0.578255i \(-0.803734\pi\)
−0.815856 + 0.578255i \(0.803734\pi\)
\(828\) 0 0
\(829\) −47.7832 −1.65958 −0.829789 0.558077i \(-0.811539\pi\)
−0.829789 + 0.558077i \(0.811539\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 18.9975i − 0.658225i
\(834\) 0 0
\(835\) − 62.9954i − 2.18005i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 49.5836 1.71182 0.855908 0.517129i \(-0.172999\pi\)
0.855908 + 0.517129i \(0.172999\pi\)
\(840\) 0 0
\(841\) 26.3630 0.909069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 31.4465i − 1.08179i
\(846\) 0 0
\(847\) 2.08290i 0.0715693i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 71.4252 2.44842
\(852\) 0 0
\(853\) −55.9921 −1.91713 −0.958566 0.284871i \(-0.908049\pi\)
−0.958566 + 0.284871i \(0.908049\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.2358i 0.725400i 0.931906 + 0.362700i \(0.118145\pi\)
−0.931906 + 0.362700i \(0.881855\pi\)
\(858\) 0 0
\(859\) 22.3211i 0.761585i 0.924660 + 0.380793i \(0.124349\pi\)
−0.924660 + 0.380793i \(0.875651\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.5705 −0.938512 −0.469256 0.883062i \(-0.655478\pi\)
−0.469256 + 0.883062i \(0.655478\pi\)
\(864\) 0 0
\(865\) −60.0339 −2.04121
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.57395i 0.121238i
\(870\) 0 0
\(871\) − 7.14410i − 0.242069i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.56829 −0.222049
\(876\) 0 0
\(877\) 31.2115 1.05394 0.526969 0.849884i \(-0.323328\pi\)
0.526969 + 0.849884i \(0.323328\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 14.5165i − 0.489073i −0.969640 0.244537i \(-0.921364\pi\)
0.969640 0.244537i \(-0.0786359\pi\)
\(882\) 0 0
\(883\) 39.6025i 1.33273i 0.745626 + 0.666365i \(0.232151\pi\)
−0.745626 + 0.666365i \(0.767849\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.5914 1.63154 0.815771 0.578376i \(-0.196313\pi\)
0.815771 + 0.578376i \(0.196313\pi\)
\(888\) 0 0
\(889\) −27.3086 −0.915900
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 2.25440i − 0.0754405i
\(894\) 0 0
\(895\) − 48.2423i − 1.61256i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.13945 0.104707
\(900\) 0 0
\(901\) 20.7026 0.689705
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 30.1977i − 1.00380i
\(906\) 0 0
\(907\) 22.2447i 0.738623i 0.929306 + 0.369311i \(0.120406\pi\)
−0.929306 + 0.369311i \(0.879594\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22.9203 −0.759383 −0.379692 0.925113i \(-0.623970\pi\)
−0.379692 + 0.925113i \(0.623970\pi\)
\(912\) 0 0
\(913\) −14.1935 −0.469738
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 23.4108i − 0.773091i
\(918\) 0 0
\(919\) 29.9724i 0.988699i 0.869263 + 0.494349i \(0.164594\pi\)
−0.869263 + 0.494349i \(0.835406\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 25.9386 0.853780
\(924\) 0 0
\(925\) 31.9564 1.05072
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.5654i 0.707537i 0.935333 + 0.353768i \(0.115100\pi\)
−0.935333 + 0.353768i \(0.884900\pi\)
\(930\) 0 0
\(931\) − 9.18718i − 0.301098i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −21.3488 −0.698180
\(936\) 0 0
\(937\) 11.5824 0.378381 0.189190 0.981940i \(-0.439414\pi\)
0.189190 + 0.981940i \(0.439414\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 46.0713i 1.50188i 0.660369 + 0.750941i \(0.270400\pi\)
−0.660369 + 0.750941i \(0.729600\pi\)
\(942\) 0 0
\(943\) 75.8949i 2.47148i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.90636 −0.321914 −0.160957 0.986961i \(-0.551458\pi\)
−0.160957 + 0.986961i \(0.551458\pi\)
\(948\) 0 0
\(949\) 2.72492 0.0884545
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.432238i 0.0140016i 0.999975 + 0.00700078i \(0.00222844\pi\)
−0.999975 + 0.00700078i \(0.997772\pi\)
\(954\) 0 0
\(955\) 2.83219i 0.0916474i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.9653 −1.19367
\(960\) 0 0
\(961\) 27.2624 0.879431
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 11.8087i − 0.380135i
\(966\) 0 0
\(967\) 24.4147i 0.785123i 0.919726 + 0.392561i \(0.128411\pi\)
−0.919726 + 0.392561i \(0.871589\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.827442 0.0265539 0.0132769 0.999912i \(-0.495774\pi\)
0.0132769 + 0.999912i \(0.495774\pi\)
\(972\) 0 0
\(973\) −14.3702 −0.460687
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.3775i 1.29179i 0.763426 + 0.645895i \(0.223516\pi\)
−0.763426 + 0.645895i \(0.776484\pi\)
\(978\) 0 0
\(979\) 16.6429i 0.531910i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −27.6070 −0.880525 −0.440263 0.897869i \(-0.645115\pi\)
−0.440263 + 0.897869i \(0.645115\pi\)
\(984\) 0 0
\(985\) 6.97325 0.222186
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 6.29627i − 0.200210i
\(990\) 0 0
\(991\) − 23.8248i − 0.756821i −0.925638 0.378411i \(-0.876471\pi\)
0.925638 0.378411i \(-0.123529\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.560933 −0.0177828
\(996\) 0 0
\(997\) −0.380300 −0.0120442 −0.00602211 0.999982i \(-0.501917\pi\)
−0.00602211 + 0.999982i \(0.501917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.d.c.287.11 yes 12
3.2 odd 2 3168.2.d.d.287.1 yes 12
4.3 odd 2 3168.2.d.d.287.11 yes 12
8.3 odd 2 6336.2.d.i.3455.2 12
8.5 even 2 6336.2.d.j.3455.2 12
12.11 even 2 inner 3168.2.d.c.287.1 12
24.5 odd 2 6336.2.d.i.3455.12 12
24.11 even 2 6336.2.d.j.3455.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3168.2.d.c.287.1 12 12.11 even 2 inner
3168.2.d.c.287.11 yes 12 1.1 even 1 trivial
3168.2.d.d.287.1 yes 12 3.2 odd 2
3168.2.d.d.287.11 yes 12 4.3 odd 2
6336.2.d.i.3455.2 12 8.3 odd 2
6336.2.d.i.3455.12 12 24.5 odd 2
6336.2.d.j.3455.2 12 8.5 even 2
6336.2.d.j.3455.12 12 24.11 even 2