Properties

Label 3150.3.e.e.701.2
Level $3150$
Weight $3$
Character 3150.701
Analytic conductor $85.831$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3150.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(85.8312832735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
Defining polynomial: \(x^{4} + 8 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 701.2
Root \(-1.16372i\) of defining polynomial
Character \(\chi\) \(=\) 3150.701
Dual form 3150.3.e.e.701.4

$q$-expansion

\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +2.64575 q^{7} +2.82843i q^{8} +O(q^{10})\) \(q-1.41421i q^{2} -2.00000 q^{4} +2.64575 q^{7} +2.82843i q^{8} +12.1382i q^{11} +18.5830 q^{13} -3.74166i q^{14} +4.00000 q^{16} -10.9015i q^{17} +20.0000 q^{19} +17.1660 q^{22} -12.1382i q^{23} -26.2803i q^{26} -5.29150 q^{28} -41.8367i q^{29} +25.1660 q^{31} -5.65685i q^{32} -15.4170 q^{34} -38.0000 q^{37} -28.2843i q^{38} +60.6337i q^{41} -83.4980 q^{43} -24.2764i q^{44} -17.1660 q^{46} -16.9706i q^{47} +7.00000 q^{49} -37.1660 q^{52} +94.0424i q^{53} +7.48331i q^{56} -59.1660 q^{58} +58.2175i q^{59} +15.6680 q^{61} -35.5901i q^{62} -8.00000 q^{64} +132.664 q^{67} +21.8029i q^{68} +12.1382i q^{71} +76.9150 q^{73} +53.7401i q^{74} -40.0000 q^{76} +32.1147i q^{77} +33.6680 q^{79} +85.7490 q^{82} -60.5764i q^{83} +118.084i q^{86} -34.3320 q^{88} +4.77506i q^{89} +49.1660 q^{91} +24.2764i q^{92} -24.0000 q^{94} +188.413 q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + O(q^{10}) \) \( 4 q - 8 q^{4} + 32 q^{13} + 16 q^{16} + 80 q^{19} - 16 q^{22} + 16 q^{31} - 104 q^{34} - 152 q^{37} - 80 q^{43} + 16 q^{46} + 28 q^{49} - 64 q^{52} - 152 q^{58} + 232 q^{61} - 32 q^{64} + 192 q^{67} + 96 q^{73} - 160 q^{76} + 304 q^{79} + 216 q^{82} + 32 q^{88} + 112 q^{91} - 96 q^{94} + 288 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 12.1382i 1.10347i 0.834019 + 0.551736i \(0.186035\pi\)
−0.834019 + 0.551736i \(0.813965\pi\)
\(12\) 0 0
\(13\) 18.5830 1.42946 0.714731 0.699399i \(-0.246549\pi\)
0.714731 + 0.699399i \(0.246549\pi\)
\(14\) − 3.74166i − 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 10.9015i − 0.641262i −0.947204 0.320631i \(-0.896105\pi\)
0.947204 0.320631i \(-0.103895\pi\)
\(18\) 0 0
\(19\) 20.0000 1.05263 0.526316 0.850289i \(-0.323573\pi\)
0.526316 + 0.850289i \(0.323573\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 17.1660 0.780273
\(23\) − 12.1382i − 0.527748i −0.964557 0.263874i \(-0.915000\pi\)
0.964557 0.263874i \(-0.0850003\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 26.2803i − 1.01078i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) − 41.8367i − 1.44264i −0.692600 0.721322i \(-0.743535\pi\)
0.692600 0.721322i \(-0.256465\pi\)
\(30\) 0 0
\(31\) 25.1660 0.811807 0.405903 0.913916i \(-0.366957\pi\)
0.405903 + 0.913916i \(0.366957\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −15.4170 −0.453441
\(35\) 0 0
\(36\) 0 0
\(37\) −38.0000 −1.02703 −0.513514 0.858082i \(-0.671656\pi\)
−0.513514 + 0.858082i \(0.671656\pi\)
\(38\) − 28.2843i − 0.744323i
\(39\) 0 0
\(40\) 0 0
\(41\) 60.6337i 1.47887i 0.673227 + 0.739435i \(0.264908\pi\)
−0.673227 + 0.739435i \(0.735092\pi\)
\(42\) 0 0
\(43\) −83.4980 −1.94181 −0.970907 0.239455i \(-0.923031\pi\)
−0.970907 + 0.239455i \(0.923031\pi\)
\(44\) − 24.2764i − 0.551736i
\(45\) 0 0
\(46\) −17.1660 −0.373174
\(47\) − 16.9706i − 0.361076i −0.983568 0.180538i \(-0.942216\pi\)
0.983568 0.180538i \(-0.0577838\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −37.1660 −0.714731
\(53\) 94.0424i 1.77439i 0.461399 + 0.887193i \(0.347348\pi\)
−0.461399 + 0.887193i \(0.652652\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 7.48331i 0.133631i
\(57\) 0 0
\(58\) −59.1660 −1.02010
\(59\) 58.2175i 0.986738i 0.869820 + 0.493369i \(0.164235\pi\)
−0.869820 + 0.493369i \(0.835765\pi\)
\(60\) 0 0
\(61\) 15.6680 0.256852 0.128426 0.991719i \(-0.459008\pi\)
0.128426 + 0.991719i \(0.459008\pi\)
\(62\) − 35.5901i − 0.574034i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 132.664 1.98006 0.990030 0.140856i \(-0.0449853\pi\)
0.990030 + 0.140856i \(0.0449853\pi\)
\(68\) 21.8029i 0.320631i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.1382i 0.170961i 0.996340 + 0.0854803i \(0.0272425\pi\)
−0.996340 + 0.0854803i \(0.972758\pi\)
\(72\) 0 0
\(73\) 76.9150 1.05363 0.526815 0.849980i \(-0.323386\pi\)
0.526815 + 0.849980i \(0.323386\pi\)
\(74\) 53.7401i 0.726218i
\(75\) 0 0
\(76\) −40.0000 −0.526316
\(77\) 32.1147i 0.417074i
\(78\) 0 0
\(79\) 33.6680 0.426177 0.213088 0.977033i \(-0.431648\pi\)
0.213088 + 0.977033i \(0.431648\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 85.7490 1.04572
\(83\) − 60.5764i − 0.729836i −0.931040 0.364918i \(-0.881097\pi\)
0.931040 0.364918i \(-0.118903\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 118.084i 1.37307i
\(87\) 0 0
\(88\) −34.3320 −0.390137
\(89\) 4.77506i 0.0536523i 0.999640 + 0.0268262i \(0.00854006\pi\)
−0.999640 + 0.0268262i \(0.991460\pi\)
\(90\) 0 0
\(91\) 49.1660 0.540286
\(92\) 24.2764i 0.263874i
\(93\) 0 0
\(94\) −24.0000 −0.255319
\(95\) 0 0
\(96\) 0 0
\(97\) 188.413 1.94240 0.971201 0.238260i \(-0.0765771\pi\)
0.971201 + 0.238260i \(0.0765771\pi\)
\(98\) − 9.89949i − 0.101015i
\(99\) 0 0
\(100\) 0 0
\(101\) − 106.713i − 1.05656i −0.849069 0.528282i \(-0.822836\pi\)
0.849069 0.528282i \(-0.177164\pi\)
\(102\) 0 0
\(103\) −131.498 −1.27668 −0.638340 0.769755i \(-0.720379\pi\)
−0.638340 + 0.769755i \(0.720379\pi\)
\(104\) 52.5607i 0.505391i
\(105\) 0 0
\(106\) 132.996 1.25468
\(107\) 82.3793i 0.769900i 0.922937 + 0.384950i \(0.125781\pi\)
−0.922937 + 0.384950i \(0.874219\pi\)
\(108\) 0 0
\(109\) 33.8301 0.310367 0.155184 0.987886i \(-0.450403\pi\)
0.155184 + 0.987886i \(0.450403\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.5830 0.0944911
\(113\) − 28.5190i − 0.252381i −0.992006 0.126190i \(-0.959725\pi\)
0.992006 0.126190i \(-0.0402750\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 83.6734i 0.721322i
\(117\) 0 0
\(118\) 82.3320 0.697729
\(119\) − 28.8426i − 0.242374i
\(120\) 0 0
\(121\) −26.3360 −0.217653
\(122\) − 22.1579i − 0.181622i
\(123\) 0 0
\(124\) −50.3320 −0.405903
\(125\) 0 0
\(126\) 0 0
\(127\) −129.668 −1.02101 −0.510504 0.859875i \(-0.670541\pi\)
−0.510504 + 0.859875i \(0.670541\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 148.017i 1.12990i 0.825124 + 0.564952i \(0.191105\pi\)
−0.825124 + 0.564952i \(0.808895\pi\)
\(132\) 0 0
\(133\) 52.9150 0.397857
\(134\) − 187.615i − 1.40011i
\(135\) 0 0
\(136\) 30.8340 0.226721
\(137\) − 76.9573i − 0.561732i −0.959747 0.280866i \(-0.909378\pi\)
0.959747 0.280866i \(-0.0906216\pi\)
\(138\) 0 0
\(139\) 217.328 1.56351 0.781756 0.623585i \(-0.214324\pi\)
0.781756 + 0.623585i \(0.214324\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 17.1660 0.120887
\(143\) 225.564i 1.57737i
\(144\) 0 0
\(145\) 0 0
\(146\) − 108.774i − 0.745029i
\(147\) 0 0
\(148\) 76.0000 0.513514
\(149\) − 161.925i − 1.08674i −0.839492 0.543371i \(-0.817148\pi\)
0.839492 0.543371i \(-0.182852\pi\)
\(150\) 0 0
\(151\) −93.1660 −0.616993 −0.308497 0.951225i \(-0.599826\pi\)
−0.308497 + 0.951225i \(0.599826\pi\)
\(152\) 56.5685i 0.372161i
\(153\) 0 0
\(154\) 45.4170 0.294916
\(155\) 0 0
\(156\) 0 0
\(157\) 184.996 1.17832 0.589159 0.808017i \(-0.299459\pi\)
0.589159 + 0.808017i \(0.299459\pi\)
\(158\) − 47.6137i − 0.301353i
\(159\) 0 0
\(160\) 0 0
\(161\) − 32.1147i − 0.199470i
\(162\) 0 0
\(163\) −86.9961 −0.533718 −0.266859 0.963736i \(-0.585986\pi\)
−0.266859 + 0.963736i \(0.585986\pi\)
\(164\) − 121.267i − 0.739435i
\(165\) 0 0
\(166\) −85.6680 −0.516072
\(167\) 60.5764i 0.362733i 0.983416 + 0.181366i \(0.0580520\pi\)
−0.983416 + 0.181366i \(0.941948\pi\)
\(168\) 0 0
\(169\) 176.328 1.04336
\(170\) 0 0
\(171\) 0 0
\(172\) 166.996 0.970907
\(173\) 162.572i 0.939721i 0.882741 + 0.469860i \(0.155696\pi\)
−0.882741 + 0.469860i \(0.844304\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 48.5528i 0.275868i
\(177\) 0 0
\(178\) 6.75295 0.0379379
\(179\) − 223.091i − 1.24632i −0.782095 0.623159i \(-0.785849\pi\)
0.782095 0.623159i \(-0.214151\pi\)
\(180\) 0 0
\(181\) 188.915 1.04373 0.521865 0.853028i \(-0.325237\pi\)
0.521865 + 0.853028i \(0.325237\pi\)
\(182\) − 69.5312i − 0.382040i
\(183\) 0 0
\(184\) 34.3320 0.186587
\(185\) 0 0
\(186\) 0 0
\(187\) 132.324 0.707616
\(188\) 33.9411i 0.180538i
\(189\) 0 0
\(190\) 0 0
\(191\) 228.038i 1.19391i 0.802273 + 0.596957i \(0.203624\pi\)
−0.802273 + 0.596957i \(0.796376\pi\)
\(192\) 0 0
\(193\) −134.000 −0.694301 −0.347150 0.937810i \(-0.612851\pi\)
−0.347150 + 0.937810i \(0.612851\pi\)
\(194\) − 266.456i − 1.37349i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) − 188.560i − 0.957157i −0.878045 0.478579i \(-0.841152\pi\)
0.878045 0.478579i \(-0.158848\pi\)
\(198\) 0 0
\(199\) 102.494 0.515046 0.257523 0.966272i \(-0.417094\pi\)
0.257523 + 0.966272i \(0.417094\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −150.915 −0.747104
\(203\) − 110.689i − 0.545268i
\(204\) 0 0
\(205\) 0 0
\(206\) 185.966i 0.902749i
\(207\) 0 0
\(208\) 74.3320 0.357365
\(209\) 242.764i 1.16155i
\(210\) 0 0
\(211\) −84.5020 −0.400483 −0.200242 0.979747i \(-0.564173\pi\)
−0.200242 + 0.979747i \(0.564173\pi\)
\(212\) − 188.085i − 0.887193i
\(213\) 0 0
\(214\) 116.502 0.544402
\(215\) 0 0
\(216\) 0 0
\(217\) 66.5830 0.306834
\(218\) − 47.8429i − 0.219463i
\(219\) 0 0
\(220\) 0 0
\(221\) − 202.582i − 0.916660i
\(222\) 0 0
\(223\) 158.494 0.710736 0.355368 0.934727i \(-0.384356\pi\)
0.355368 + 0.934727i \(0.384356\pi\)
\(224\) − 14.9666i − 0.0668153i
\(225\) 0 0
\(226\) −40.3320 −0.178460
\(227\) 101.823i 0.448561i 0.974525 + 0.224281i \(0.0720032\pi\)
−0.974525 + 0.224281i \(0.927997\pi\)
\(228\) 0 0
\(229\) −268.915 −1.17430 −0.587151 0.809478i \(-0.699750\pi\)
−0.587151 + 0.809478i \(0.699750\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 118.332 0.510052
\(233\) − 26.2748i − 0.112767i −0.998409 0.0563836i \(-0.982043\pi\)
0.998409 0.0563836i \(-0.0179570\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 116.435i − 0.493369i
\(237\) 0 0
\(238\) −40.7895 −0.171385
\(239\) − 92.2733i − 0.386081i −0.981191 0.193040i \(-0.938165\pi\)
0.981191 0.193040i \(-0.0618348\pi\)
\(240\) 0 0
\(241\) 343.247 1.42426 0.712131 0.702047i \(-0.247730\pi\)
0.712131 + 0.702047i \(0.247730\pi\)
\(242\) 37.2447i 0.153904i
\(243\) 0 0
\(244\) −31.3360 −0.128426
\(245\) 0 0
\(246\) 0 0
\(247\) 371.660 1.50470
\(248\) 71.1802i 0.287017i
\(249\) 0 0
\(250\) 0 0
\(251\) − 356.382i − 1.41985i −0.704278 0.709924i \(-0.748729\pi\)
0.704278 0.709924i \(-0.251271\pi\)
\(252\) 0 0
\(253\) 147.336 0.582356
\(254\) 183.378i 0.721961i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 254.730i − 0.991169i −0.868560 0.495584i \(-0.834954\pi\)
0.868560 0.495584i \(-0.165046\pi\)
\(258\) 0 0
\(259\) −100.539 −0.388180
\(260\) 0 0
\(261\) 0 0
\(262\) 209.328 0.798962
\(263\) 261.979i 0.996117i 0.867143 + 0.498059i \(0.165954\pi\)
−0.867143 + 0.498059i \(0.834046\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 74.8331i − 0.281328i
\(267\) 0 0
\(268\) −265.328 −0.990030
\(269\) − 93.6246i − 0.348047i −0.984742 0.174023i \(-0.944323\pi\)
0.984742 0.174023i \(-0.0556768\pi\)
\(270\) 0 0
\(271\) 1.16601 0.00430262 0.00215131 0.999998i \(-0.499315\pi\)
0.00215131 + 0.999998i \(0.499315\pi\)
\(272\) − 43.6058i − 0.160316i
\(273\) 0 0
\(274\) −108.834 −0.397204
\(275\) 0 0
\(276\) 0 0
\(277\) −32.0000 −0.115523 −0.0577617 0.998330i \(-0.518396\pi\)
−0.0577617 + 0.998330i \(0.518396\pi\)
\(278\) − 307.348i − 1.10557i
\(279\) 0 0
\(280\) 0 0
\(281\) − 166.757i − 0.593441i −0.954964 0.296721i \(-0.904107\pi\)
0.954964 0.296721i \(-0.0958930\pi\)
\(282\) 0 0
\(283\) −16.3399 −0.0577381 −0.0288691 0.999583i \(-0.509191\pi\)
−0.0288691 + 0.999583i \(0.509191\pi\)
\(284\) − 24.2764i − 0.0854803i
\(285\) 0 0
\(286\) 318.996 1.11537
\(287\) 160.422i 0.558961i
\(288\) 0 0
\(289\) 170.158 0.588782
\(290\) 0 0
\(291\) 0 0
\(292\) −153.830 −0.526815
\(293\) 368.921i 1.25912i 0.776953 + 0.629558i \(0.216764\pi\)
−0.776953 + 0.629558i \(0.783236\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 107.480i − 0.363109i
\(297\) 0 0
\(298\) −228.996 −0.768443
\(299\) − 225.564i − 0.754396i
\(300\) 0 0
\(301\) −220.915 −0.733937
\(302\) 131.757i 0.436280i
\(303\) 0 0
\(304\) 80.0000 0.263158
\(305\) 0 0
\(306\) 0 0
\(307\) 192.664 0.627570 0.313785 0.949494i \(-0.398403\pi\)
0.313785 + 0.949494i \(0.398403\pi\)
\(308\) − 64.2293i − 0.208537i
\(309\) 0 0
\(310\) 0 0
\(311\) − 131.276i − 0.422109i −0.977474 0.211055i \(-0.932310\pi\)
0.977474 0.211055i \(-0.0676898\pi\)
\(312\) 0 0
\(313\) −43.3281 −0.138428 −0.0692142 0.997602i \(-0.522049\pi\)
−0.0692142 + 0.997602i \(0.522049\pi\)
\(314\) − 261.624i − 0.833197i
\(315\) 0 0
\(316\) −67.3360 −0.213088
\(317\) − 251.724i − 0.794083i −0.917801 0.397042i \(-0.870037\pi\)
0.917801 0.397042i \(-0.129963\pi\)
\(318\) 0 0
\(319\) 507.822 1.59192
\(320\) 0 0
\(321\) 0 0
\(322\) −45.4170 −0.141047
\(323\) − 218.029i − 0.675013i
\(324\) 0 0
\(325\) 0 0
\(326\) 123.031i 0.377396i
\(327\) 0 0
\(328\) −171.498 −0.522860
\(329\) − 44.8999i − 0.136474i
\(330\) 0 0
\(331\) 361.490 1.09212 0.546058 0.837748i \(-0.316128\pi\)
0.546058 + 0.837748i \(0.316128\pi\)
\(332\) 121.153i 0.364918i
\(333\) 0 0
\(334\) 85.6680 0.256491
\(335\) 0 0
\(336\) 0 0
\(337\) 298.834 0.886748 0.443374 0.896337i \(-0.353781\pi\)
0.443374 + 0.896337i \(0.353781\pi\)
\(338\) − 249.366i − 0.737768i
\(339\) 0 0
\(340\) 0 0
\(341\) 305.470i 0.895807i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) − 236.168i − 0.686535i
\(345\) 0 0
\(346\) 229.911 0.664483
\(347\) 206.120i 0.594006i 0.954876 + 0.297003i \(0.0959872\pi\)
−0.954876 + 0.297003i \(0.904013\pi\)
\(348\) 0 0
\(349\) 434.324 1.24448 0.622241 0.782826i \(-0.286222\pi\)
0.622241 + 0.782826i \(0.286222\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 68.6640 0.195068
\(353\) − 185.439i − 0.525324i −0.964888 0.262662i \(-0.915400\pi\)
0.964888 0.262662i \(-0.0846005\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 9.55012i − 0.0268262i
\(357\) 0 0
\(358\) −315.498 −0.881279
\(359\) 516.767i 1.43946i 0.694254 + 0.719731i \(0.255735\pi\)
−0.694254 + 0.719731i \(0.744265\pi\)
\(360\) 0 0
\(361\) 39.0000 0.108033
\(362\) − 267.166i − 0.738028i
\(363\) 0 0
\(364\) −98.3320 −0.270143
\(365\) 0 0
\(366\) 0 0
\(367\) 117.490 0.320137 0.160068 0.987106i \(-0.448829\pi\)
0.160068 + 0.987106i \(0.448829\pi\)
\(368\) − 48.5528i − 0.131937i
\(369\) 0 0
\(370\) 0 0
\(371\) 248.813i 0.670655i
\(372\) 0 0
\(373\) 402.664 1.07953 0.539764 0.841816i \(-0.318513\pi\)
0.539764 + 0.841816i \(0.318513\pi\)
\(374\) − 187.135i − 0.500360i
\(375\) 0 0
\(376\) 48.0000 0.127660
\(377\) − 777.451i − 2.06221i
\(378\) 0 0
\(379\) 398.834 1.05233 0.526166 0.850382i \(-0.323629\pi\)
0.526166 + 0.850382i \(0.323629\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 322.494 0.844225
\(383\) 744.804i 1.94466i 0.233614 + 0.972329i \(0.424945\pi\)
−0.233614 + 0.972329i \(0.575055\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 189.505i 0.490945i
\(387\) 0 0
\(388\) −376.826 −0.971201
\(389\) 535.162i 1.37574i 0.725834 + 0.687869i \(0.241454\pi\)
−0.725834 + 0.687869i \(0.758546\pi\)
\(390\) 0 0
\(391\) −132.324 −0.338425
\(392\) 19.7990i 0.0505076i
\(393\) 0 0
\(394\) −266.664 −0.676812
\(395\) 0 0
\(396\) 0 0
\(397\) 94.3241 0.237592 0.118796 0.992919i \(-0.462096\pi\)
0.118796 + 0.992919i \(0.462096\pi\)
\(398\) − 144.949i − 0.364192i
\(399\) 0 0
\(400\) 0 0
\(401\) 103.593i 0.258335i 0.991623 + 0.129168i \(0.0412306\pi\)
−0.991623 + 0.129168i \(0.958769\pi\)
\(402\) 0 0
\(403\) 467.660 1.16045
\(404\) 213.426i 0.528282i
\(405\) 0 0
\(406\) −156.539 −0.385563
\(407\) − 461.252i − 1.13330i
\(408\) 0 0
\(409\) −9.75689 −0.0238555 −0.0119277 0.999929i \(-0.503797\pi\)
−0.0119277 + 0.999929i \(0.503797\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 262.996 0.638340
\(413\) 154.029i 0.372952i
\(414\) 0 0
\(415\) 0 0
\(416\) − 105.121i − 0.252696i
\(417\) 0 0
\(418\) 343.320 0.821340
\(419\) − 339.411i − 0.810051i −0.914305 0.405025i \(-0.867263\pi\)
0.914305 0.405025i \(-0.132737\pi\)
\(420\) 0 0
\(421\) −599.320 −1.42356 −0.711782 0.702401i \(-0.752111\pi\)
−0.711782 + 0.702401i \(0.752111\pi\)
\(422\) 119.504i 0.283184i
\(423\) 0 0
\(424\) −265.992 −0.627340
\(425\) 0 0
\(426\) 0 0
\(427\) 41.4536 0.0970810
\(428\) − 164.759i − 0.384950i
\(429\) 0 0
\(430\) 0 0
\(431\) − 710.978i − 1.64960i −0.565424 0.824800i \(-0.691288\pi\)
0.565424 0.824800i \(-0.308712\pi\)
\(432\) 0 0
\(433\) −377.984 −0.872943 −0.436471 0.899718i \(-0.643772\pi\)
−0.436471 + 0.899718i \(0.643772\pi\)
\(434\) − 94.1626i − 0.216964i
\(435\) 0 0
\(436\) −67.6601 −0.155184
\(437\) − 242.764i − 0.555524i
\(438\) 0 0
\(439\) 528.146 1.20307 0.601533 0.798848i \(-0.294557\pi\)
0.601533 + 0.798848i \(0.294557\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −286.494 −0.648177
\(443\) 36.6438i 0.0827174i 0.999144 + 0.0413587i \(0.0131686\pi\)
−0.999144 + 0.0413587i \(0.986831\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 224.144i − 0.502566i
\(447\) 0 0
\(448\) −21.1660 −0.0472456
\(449\) 397.612i 0.885550i 0.896633 + 0.442775i \(0.146006\pi\)
−0.896633 + 0.442775i \(0.853994\pi\)
\(450\) 0 0
\(451\) −735.984 −1.63189
\(452\) 57.0381i 0.126190i
\(453\) 0 0
\(454\) 144.000 0.317181
\(455\) 0 0
\(456\) 0 0
\(457\) −344.324 −0.753445 −0.376722 0.926326i \(-0.622949\pi\)
−0.376722 + 0.926326i \(0.622949\pi\)
\(458\) 380.303i 0.830357i
\(459\) 0 0
\(460\) 0 0
\(461\) 370.936i 0.804634i 0.915500 + 0.402317i \(0.131795\pi\)
−0.915500 + 0.402317i \(0.868205\pi\)
\(462\) 0 0
\(463\) −78.3320 −0.169184 −0.0845918 0.996416i \(-0.526959\pi\)
−0.0845918 + 0.996416i \(0.526959\pi\)
\(464\) − 167.347i − 0.360661i
\(465\) 0 0
\(466\) −37.1581 −0.0797385
\(467\) − 399.758i − 0.856014i −0.903775 0.428007i \(-0.859216\pi\)
0.903775 0.428007i \(-0.140784\pi\)
\(468\) 0 0
\(469\) 350.996 0.748392
\(470\) 0 0
\(471\) 0 0
\(472\) −164.664 −0.348864
\(473\) − 1013.52i − 2.14274i
\(474\) 0 0
\(475\) 0 0
\(476\) 57.6851i 0.121187i
\(477\) 0 0
\(478\) −130.494 −0.273000
\(479\) 703.328i 1.46833i 0.678973 + 0.734163i \(0.262425\pi\)
−0.678973 + 0.734163i \(0.737575\pi\)
\(480\) 0 0
\(481\) −706.154 −1.46810
\(482\) − 485.425i − 1.00711i
\(483\) 0 0
\(484\) 52.6719 0.108826
\(485\) 0 0
\(486\) 0 0
\(487\) 82.5098 0.169425 0.0847124 0.996405i \(-0.473003\pi\)
0.0847124 + 0.996405i \(0.473003\pi\)
\(488\) 44.3157i 0.0908109i
\(489\) 0 0
\(490\) 0 0
\(491\) 184.203i 0.375158i 0.982249 + 0.187579i \(0.0600641\pi\)
−0.982249 + 0.187579i \(0.939936\pi\)
\(492\) 0 0
\(493\) −456.081 −0.925114
\(494\) − 525.607i − 1.06398i
\(495\) 0 0
\(496\) 100.664 0.202952
\(497\) 32.1147i 0.0646170i
\(498\) 0 0
\(499\) 752.810 1.50864 0.754319 0.656508i \(-0.227967\pi\)
0.754319 + 0.656508i \(0.227967\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −504.000 −1.00398
\(503\) − 662.540i − 1.31718i −0.752504 0.658588i \(-0.771154\pi\)
0.752504 0.658588i \(-0.228846\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 208.365i − 0.411788i
\(507\) 0 0
\(508\) 259.336 0.510504
\(509\) − 949.115i − 1.86467i −0.361601 0.932333i \(-0.617770\pi\)
0.361601 0.932333i \(-0.382230\pi\)
\(510\) 0 0
\(511\) 203.498 0.398235
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −360.243 −0.700862
\(515\) 0 0
\(516\) 0 0
\(517\) 205.992 0.398437
\(518\) 142.183i 0.274485i
\(519\) 0 0
\(520\) 0 0
\(521\) − 714.344i − 1.37110i −0.728025 0.685551i \(-0.759561\pi\)
0.728025 0.685551i \(-0.240439\pi\)
\(522\) 0 0
\(523\) 232.000 0.443595 0.221797 0.975093i \(-0.428808\pi\)
0.221797 + 0.975093i \(0.428808\pi\)
\(524\) − 296.035i − 0.564952i
\(525\) 0 0
\(526\) 370.494 0.704361
\(527\) − 274.346i − 0.520581i
\(528\) 0 0
\(529\) 381.664 0.721482
\(530\) 0 0
\(531\) 0 0
\(532\) −105.830 −0.198929
\(533\) 1126.76i 2.11399i
\(534\) 0 0
\(535\) 0 0
\(536\) 375.231i 0.700057i
\(537\) 0 0
\(538\) −132.405 −0.246106
\(539\) 84.9674i 0.157639i
\(540\) 0 0
\(541\) 165.668 0.306225 0.153113 0.988209i \(-0.451070\pi\)
0.153113 + 0.988209i \(0.451070\pi\)
\(542\) − 1.64899i − 0.00304241i
\(543\) 0 0
\(544\) −61.6680 −0.113360
\(545\) 0 0
\(546\) 0 0
\(547\) −295.676 −0.540541 −0.270270 0.962784i \(-0.587113\pi\)
−0.270270 + 0.962784i \(0.587113\pi\)
\(548\) 153.915i 0.280866i
\(549\) 0 0
\(550\) 0 0
\(551\) − 836.734i − 1.51857i
\(552\) 0 0
\(553\) 89.0771 0.161080
\(554\) 45.2548i 0.0816874i
\(555\) 0 0
\(556\) −434.656 −0.781756
\(557\) 76.8426i 0.137958i 0.997618 + 0.0689790i \(0.0219742\pi\)
−0.997618 + 0.0689790i \(0.978026\pi\)
\(558\) 0 0
\(559\) −1551.64 −2.77575
\(560\) 0 0
\(561\) 0 0
\(562\) −235.830 −0.419626
\(563\) 1016.33i 1.80521i 0.430470 + 0.902605i \(0.358348\pi\)
−0.430470 + 0.902605i \(0.641652\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 23.1081i 0.0408270i
\(567\) 0 0
\(568\) −34.3320 −0.0604437
\(569\) 586.533i 1.03081i 0.856946 + 0.515406i \(0.172359\pi\)
−0.856946 + 0.515406i \(0.827641\pi\)
\(570\) 0 0
\(571\) 951.644 1.66663 0.833314 0.552800i \(-0.186441\pi\)
0.833314 + 0.552800i \(0.186441\pi\)
\(572\) − 451.129i − 0.788686i
\(573\) 0 0
\(574\) 226.871 0.395245
\(575\) 0 0
\(576\) 0 0
\(577\) 148.672 0.257664 0.128832 0.991666i \(-0.458877\pi\)
0.128832 + 0.991666i \(0.458877\pi\)
\(578\) − 240.640i − 0.416332i
\(579\) 0 0
\(580\) 0 0
\(581\) − 160.270i − 0.275852i
\(582\) 0 0
\(583\) −1141.51 −1.95799
\(584\) 217.549i 0.372515i
\(585\) 0 0
\(586\) 521.733 0.890330
\(587\) 332.564i 0.566548i 0.959039 + 0.283274i \(0.0914206\pi\)
−0.959039 + 0.283274i \(0.908579\pi\)
\(588\) 0 0
\(589\) 503.320 0.854533
\(590\) 0 0
\(591\) 0 0
\(592\) −152.000 −0.256757
\(593\) 217.251i 0.366359i 0.983079 + 0.183180i \(0.0586390\pi\)
−0.983079 + 0.183180i \(0.941361\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 323.849i 0.543371i
\(597\) 0 0
\(598\) −318.996 −0.533438
\(599\) 172.179i 0.287444i 0.989618 + 0.143722i \(0.0459072\pi\)
−0.989618 + 0.143722i \(0.954093\pi\)
\(600\) 0 0
\(601\) −418.000 −0.695507 −0.347754 0.937586i \(-0.613055\pi\)
−0.347754 + 0.937586i \(0.613055\pi\)
\(602\) 312.421i 0.518972i
\(603\) 0 0
\(604\) 186.332 0.308497
\(605\) 0 0
\(606\) 0 0
\(607\) −627.158 −1.03321 −0.516605 0.856224i \(-0.672804\pi\)
−0.516605 + 0.856224i \(0.672804\pi\)
\(608\) − 113.137i − 0.186081i
\(609\) 0 0
\(610\) 0 0
\(611\) − 315.364i − 0.516144i
\(612\) 0 0
\(613\) 279.328 0.455674 0.227837 0.973699i \(-0.426835\pi\)
0.227837 + 0.973699i \(0.426835\pi\)
\(614\) − 272.468i − 0.443759i
\(615\) 0 0
\(616\) −90.8340 −0.147458
\(617\) 358.380i 0.580843i 0.956899 + 0.290422i \(0.0937955\pi\)
−0.956899 + 0.290422i \(0.906204\pi\)
\(618\) 0 0
\(619\) −983.644 −1.58909 −0.794543 0.607208i \(-0.792290\pi\)
−0.794543 + 0.607208i \(0.792290\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −185.652 −0.298476
\(623\) 12.6336i 0.0202787i
\(624\) 0 0
\(625\) 0 0
\(626\) 61.2752i 0.0978836i
\(627\) 0 0
\(628\) −369.992 −0.589159
\(629\) 414.256i 0.658594i
\(630\) 0 0
\(631\) −298.996 −0.473845 −0.236922 0.971529i \(-0.576139\pi\)
−0.236922 + 0.971529i \(0.576139\pi\)
\(632\) 95.2274i 0.150676i
\(633\) 0 0
\(634\) −355.992 −0.561502
\(635\) 0 0
\(636\) 0 0
\(637\) 130.081 0.204209
\(638\) − 718.169i − 1.12566i
\(639\) 0 0
\(640\) 0 0
\(641\) 311.957i 0.486672i 0.969942 + 0.243336i \(0.0782418\pi\)
−0.969942 + 0.243336i \(0.921758\pi\)
\(642\) 0 0
\(643\) 604.000 0.939347 0.469673 0.882840i \(-0.344372\pi\)
0.469673 + 0.882840i \(0.344372\pi\)
\(644\) 64.2293i 0.0997350i
\(645\) 0 0
\(646\) −308.340 −0.477306
\(647\) 179.600i 0.277588i 0.990321 + 0.138794i \(0.0443226\pi\)
−0.990321 + 0.138794i \(0.955677\pi\)
\(648\) 0 0
\(649\) −706.656 −1.08884
\(650\) 0 0
\(651\) 0 0
\(652\) 173.992 0.266859
\(653\) 481.892i 0.737966i 0.929436 + 0.368983i \(0.120294\pi\)
−0.929436 + 0.368983i \(0.879706\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 242.535i 0.369718i
\(657\) 0 0
\(658\) −63.4980 −0.0965016
\(659\) − 877.408i − 1.33142i −0.746209 0.665711i \(-0.768128\pi\)
0.746209 0.665711i \(-0.231872\pi\)
\(660\) 0 0
\(661\) −521.644 −0.789175 −0.394587 0.918858i \(-0.629112\pi\)
−0.394587 + 0.918858i \(0.629112\pi\)
\(662\) − 511.224i − 0.772242i
\(663\) 0 0
\(664\) 171.336 0.258036
\(665\) 0 0
\(666\) 0 0
\(667\) −507.822 −0.761353
\(668\) − 121.153i − 0.181366i
\(669\) 0 0
\(670\) 0 0
\(671\) 190.181i 0.283429i
\(672\) 0 0
\(673\) 659.992 0.980672 0.490336 0.871534i \(-0.336874\pi\)
0.490336 + 0.871534i \(0.336874\pi\)
\(674\) − 422.615i − 0.627025i
\(675\) 0 0
\(676\) −352.656 −0.521681
\(677\) 1016.28i 1.50115i 0.660787 + 0.750573i \(0.270222\pi\)
−0.660787 + 0.750573i \(0.729778\pi\)
\(678\) 0 0
\(679\) 498.494 0.734159
\(680\) 0 0
\(681\) 0 0
\(682\) 432.000 0.633431
\(683\) − 235.114i − 0.344238i −0.985076 0.172119i \(-0.944939\pi\)
0.985076 0.172119i \(-0.0550613\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 26.1916i − 0.0381802i
\(687\) 0 0
\(688\) −333.992 −0.485454
\(689\) 1747.59i 2.53642i
\(690\) 0 0
\(691\) −50.9803 −0.0737776 −0.0368888 0.999319i \(-0.511745\pi\)
−0.0368888 + 0.999319i \(0.511745\pi\)
\(692\) − 325.143i − 0.469860i
\(693\) 0 0
\(694\) 291.498 0.420026
\(695\) 0 0
\(696\) 0 0
\(697\) 660.996 0.948344
\(698\) − 614.227i − 0.879982i
\(699\) 0 0
\(700\) 0 0
\(701\) − 141.530i − 0.201898i −0.994892 0.100949i \(-0.967812\pi\)
0.994892 0.100949i \(-0.0321879\pi\)
\(702\) 0 0
\(703\) −760.000 −1.08108
\(704\) − 97.1056i − 0.137934i
\(705\) 0 0
\(706\) −262.251 −0.371460
\(707\) − 282.336i − 0.399344i
\(708\) 0 0
\(709\) −55.4980 −0.0782765 −0.0391382 0.999234i \(-0.512461\pi\)
−0.0391382 + 0.999234i \(0.512461\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −13.5059 −0.0189690
\(713\) − 305.470i − 0.428429i
\(714\) 0 0
\(715\) 0 0
\(716\) 446.182i 0.623159i
\(717\) 0 0
\(718\) 730.818 1.01785
\(719\) 1009.03i 1.40338i 0.712484 + 0.701688i \(0.247570\pi\)
−0.712484 + 0.701688i \(0.752430\pi\)
\(720\) 0 0
\(721\) −347.911 −0.482540
\(722\) − 55.1543i − 0.0763910i
\(723\) 0 0
\(724\) −377.830 −0.521865
\(725\) 0 0
\(726\) 0 0
\(727\) 365.182 0.502313 0.251157 0.967946i \(-0.419189\pi\)
0.251157 + 0.967946i \(0.419189\pi\)
\(728\) 139.062i 0.191020i
\(729\) 0 0
\(730\) 0 0
\(731\) 910.251i 1.24521i
\(732\) 0 0
\(733\) 353.077 0.481688 0.240844 0.970564i \(-0.422576\pi\)
0.240844 + 0.970564i \(0.422576\pi\)
\(734\) − 166.156i − 0.226371i
\(735\) 0 0
\(736\) −68.6640 −0.0932935
\(737\) 1610.30i 2.18494i
\(738\) 0 0
\(739\) 329.684 0.446121 0.223061 0.974805i \(-0.428395\pi\)
0.223061 + 0.974805i \(0.428395\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 351.875 0.474224
\(743\) − 112.061i − 0.150822i −0.997153 0.0754112i \(-0.975973\pi\)
0.997153 0.0754112i \(-0.0240270\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 569.453i − 0.763342i
\(747\) 0 0
\(748\) −264.648 −0.353808
\(749\) 217.955i 0.290995i
\(750\) 0 0
\(751\) −144.826 −0.192844 −0.0964222 0.995341i \(-0.530740\pi\)
−0.0964222 + 0.995341i \(0.530740\pi\)
\(752\) − 67.8823i − 0.0902690i
\(753\) 0 0
\(754\) −1099.48 −1.45820
\(755\) 0 0
\(756\) 0 0
\(757\) −78.1699 −0.103263 −0.0516314 0.998666i \(-0.516442\pi\)
−0.0516314 + 0.998666i \(0.516442\pi\)
\(758\) − 564.036i − 0.744111i
\(759\) 0 0
\(760\) 0 0
\(761\) − 1465.50i − 1.92576i −0.269928 0.962880i \(-0.587000\pi\)
0.269928 0.962880i \(-0.413000\pi\)
\(762\) 0 0
\(763\) 89.5059 0.117308
\(764\) − 456.076i − 0.596957i
\(765\) 0 0
\(766\) 1053.31 1.37508
\(767\) 1081.86i 1.41050i
\(768\) 0 0
\(769\) 729.320 0.948401 0.474200 0.880417i \(-0.342737\pi\)
0.474200 + 0.880417i \(0.342737\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 268.000 0.347150
\(773\) − 434.559i − 0.562172i −0.959683 0.281086i \(-0.909305\pi\)
0.959683 0.281086i \(-0.0906947\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 532.913i 0.686743i
\(777\) 0 0
\(778\) 756.834 0.972794
\(779\) 1212.67i 1.55671i
\(780\) 0 0
\(781\) −147.336 −0.188650
\(782\) 187.135i 0.239303i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 15.3517 0.0195066 0.00975331 0.999952i \(-0.496895\pi\)
0.00975331 + 0.999952i \(0.496895\pi\)
\(788\) 377.120i 0.478579i
\(789\) 0 0
\(790\) 0 0
\(791\) − 75.4543i − 0.0953910i
\(792\) 0 0
\(793\) 291.158 0.367160
\(794\) − 133.394i − 0.168003i
\(795\) 0 0
\(796\) −204.988 −0.257523
\(797\) − 1043.48i − 1.30927i −0.755947 0.654633i \(-0.772823\pi\)
0.755947 0.654633i \(-0.227177\pi\)
\(798\) 0 0
\(799\) −185.004 −0.231544
\(800\) 0 0
\(801\) 0 0
\(802\) 146.502 0.182671
\(803\) 933.610i 1.16265i
\(804\) 0 0
\(805\) 0 0
\(806\) − 661.371i − 0.820560i
\(807\) 0 0
\(808\) 301.830 0.373552
\(809\) − 1041.31i − 1.28716i −0.765378 0.643581i \(-0.777448\pi\)
0.765378 0.643581i \(-0.222552\pi\)
\(810\) 0 0
\(811\) 502.316 0.619379 0.309689 0.950838i \(-0.399775\pi\)
0.309689 + 0.950838i \(0.399775\pi\)
\(812\) 221.379i 0.272634i
\(813\) 0 0
\(814\) −652.308 −0.801362
\(815\) 0 0
\(816\) 0 0
\(817\) −1669.96 −2.04402
\(818\) 13.7983i 0.0168684i
\(819\) 0 0
\(820\) 0 0
\(821\) 23.1137i 0.0281531i 0.999901 + 0.0140765i \(0.00448085\pi\)
−0.999901 + 0.0140765i \(0.995519\pi\)
\(822\) 0 0
\(823\) 600.664 0.729847 0.364923 0.931038i \(-0.381095\pi\)
0.364923 + 0.931038i \(0.381095\pi\)
\(824\) − 371.933i − 0.451375i
\(825\) 0 0
\(826\) 217.830 0.263717
\(827\) − 1309.21i − 1.58308i −0.611118 0.791540i \(-0.709280\pi\)
0.611118 0.791540i \(-0.290720\pi\)
\(828\) 0 0
\(829\) −621.919 −0.750204 −0.375102 0.926984i \(-0.622392\pi\)
−0.375102 + 0.926984i \(0.622392\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −148.664 −0.178683
\(833\) − 76.3102i − 0.0916089i
\(834\) 0 0
\(835\) 0 0
\(836\) − 485.528i − 0.580775i
\(837\) 0 0
\(838\) −480.000 −0.572792
\(839\) − 1190.30i − 1.41871i −0.704851 0.709355i \(-0.748986\pi\)
0.704851 0.709355i \(-0.251014\pi\)
\(840\) 0 0
\(841\) −909.308 −1.08122
\(842\) 847.567i 1.00661i
\(843\) 0 0
\(844\) 169.004 0.200242
\(845\) 0 0
\(846\) 0 0
\(847\) −69.6784 −0.0822649
\(848\) 376.170i 0.443596i
\(849\) 0 0
\(850\) 0 0
\(851\) 461.252i 0.542011i
\(852\) 0 0
\(853\) −137.012 −0.160623 −0.0803117 0.996770i \(-0.525592\pi\)
−0.0803117 + 0.996770i \(0.525592\pi\)
\(854\) − 58.6242i − 0.0686466i
\(855\) 0 0
\(856\) −233.004 −0.272201
\(857\) 466.141i 0.543922i 0.962308 + 0.271961i \(0.0876722\pi\)
−0.962308 + 0.271961i \(0.912328\pi\)
\(858\) 0 0
\(859\) 23.9843 0.0279211 0.0139606 0.999903i \(-0.495556\pi\)
0.0139606 + 0.999903i \(0.495556\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1005.47 −1.16644
\(863\) 0.114603i 0 0.000132796i 1.00000 6.63982e-5i \(2.11352e-5\pi\)
−1.00000 6.63982e-5i \(0.999979\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 534.550i 0.617264i
\(867\) 0 0
\(868\) −133.166 −0.153417
\(869\) 408.669i 0.470275i
\(870\) 0 0
\(871\) 2465.30 2.83042
\(872\) 95.6858i 0.109731i
\(873\) 0 0
\(874\) −343.320 −0.392815
\(875\) 0 0
\(876\) 0 0
\(877\) −997.304 −1.13718 −0.568589 0.822622i \(-0.692510\pi\)
−0.568589 + 0.822622i \(0.692510\pi\)
\(878\) − 746.912i − 0.850697i
\(879\) 0 0
\(880\) 0 0
\(881\) − 935.649i − 1.06203i −0.847362 0.531015i \(-0.821811\pi\)
0.847362 0.531015i \(-0.178189\pi\)
\(882\) 0 0
\(883\) 1549.47 1.75478 0.877392 0.479774i \(-0.159281\pi\)
0.877392 + 0.479774i \(0.159281\pi\)
\(884\) 405.164i 0.458330i
\(885\) 0 0
\(886\) 51.8222 0.0584900
\(887\) − 894.493i − 1.00845i −0.863573 0.504224i \(-0.831779\pi\)
0.863573 0.504224i \(-0.168221\pi\)
\(888\) 0 0
\(889\) −343.069 −0.385905
\(890\) 0 0
\(891\) 0 0
\(892\) −316.988 −0.355368
\(893\) − 339.411i − 0.380080i
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 0.0334077i
\(897\) 0 0
\(898\) 562.308 0.626179
\(899\) − 1052.86i − 1.17115i
\(900\) 0 0
\(901\) 1025.20 1.13785
\(902\) 1040.84i 1.15392i
\(903\) 0 0
\(904\) 80.6640 0.0892301
\(905\) 0 0
\(906\) 0 0
\(907\) 135.838 0.149766 0.0748831 0.997192i \(-0.476142\pi\)
0.0748831 + 0.997192i \(0.476142\pi\)
\(908\) − 203.647i − 0.224281i
\(909\) 0 0
\(910\) 0 0
\(911\) 1242.01i 1.36335i 0.731655 + 0.681675i \(0.238748\pi\)
−0.731655 + 0.681675i \(0.761252\pi\)
\(912\) 0 0
\(913\) 735.289 0.805355
\(914\) 486.948i 0.532766i
\(915\) 0 0
\(916\) 537.830 0.587151
\(917\) 391.617i 0.427063i
\(918\) 0 0
\(919\) −388.162 −0.422374 −0.211187 0.977446i \(-0.567733\pi\)
−0.211187 + 0.977446i \(0.567733\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 524.583 0.568962
\(923\) 225.564i 0.244382i
\(924\) 0 0
\(925\) 0 0
\(926\) 110.778i 0.119631i
\(927\) 0 0
\(928\) −236.664 −0.255026
\(929\) 621.694i 0.669207i 0.942359 + 0.334604i \(0.108602\pi\)
−0.942359 + 0.334604i \(0.891398\pi\)
\(930\) 0 0
\(931\) 140.000 0.150376
\(932\) 52.5495i 0.0563836i
\(933\) 0 0
\(934\) −565.344 −0.605293
\(935\) 0 0
\(936\) 0 0
\(937\) −1262.00 −1.34685 −0.673426 0.739255i \(-0.735178\pi\)
−0.673426 + 0.739255i \(0.735178\pi\)
\(938\) − 496.383i − 0.529193i
\(939\) 0 0
\(940\) 0 0
\(941\) − 672.410i − 0.714569i −0.933996 0.357285i \(-0.883703\pi\)
0.933996 0.357285i \(-0.116297\pi\)
\(942\) 0 0
\(943\) 735.984 0.780471
\(944\) 232.870i 0.246684i
\(945\) 0 0
\(946\) −1433.33 −1.51515
\(947\) 1159.75i 1.22465i 0.790605 + 0.612327i \(0.209766\pi\)
−0.790605 + 0.612327i \(0.790234\pi\)
\(948\) 0 0
\(949\) 1429.31 1.50612
\(950\) 0 0
\(951\) 0 0
\(952\) 81.5791 0.0856923
\(953\) − 163.104i − 0.171148i −0.996332 0.0855740i \(-0.972728\pi\)
0.996332 0.0855740i \(-0.0272724\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 184.547i 0.193040i
\(957\) 0 0
\(958\) 994.656 1.03826
\(959\) − 203.610i − 0.212315i
\(960\) 0 0
\(961\) −327.672 −0.340970
\(962\) 998.653i 1.03810i
\(963\) 0 0
\(964\) −686.494 −0.712131
\(965\) 0 0
\(966\) 0 0
\(967\) −887.012 −0.917282 −0.458641 0.888622i \(-0.651664\pi\)
−0.458641 + 0.888622i \(0.651664\pi\)
\(968\) − 74.4893i − 0.0769518i
\(969\) 0 0
\(970\) 0 0
\(971\) 1416.32i 1.45862i 0.684183 + 0.729310i \(0.260159\pi\)
−0.684183 + 0.729310i \(0.739841\pi\)
\(972\) 0 0
\(973\) 574.996 0.590952
\(974\) − 116.687i − 0.119801i
\(975\) 0 0
\(976\) 62.6719 0.0642130
\(977\) 339.051i 0.347032i 0.984831 + 0.173516i \(0.0555129\pi\)
−0.984831 + 0.173516i \(0.944487\pi\)
\(978\) 0 0
\(979\) −57.9606 −0.0592039
\(980\) 0 0
\(981\) 0 0
\(982\) 260.502 0.265277
\(983\) − 487.887i − 0.496324i −0.968718 0.248162i \(-0.920173\pi\)
0.968718 0.248162i \(-0.0798266\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 644.996i 0.654154i
\(987\) 0 0
\(988\) −743.320 −0.752348
\(989\) 1013.52i 1.02479i
\(990\) 0 0
\(991\) −937.474 −0.945988 −0.472994 0.881066i \(-0.656827\pi\)
−0.472994 + 0.881066i \(0.656827\pi\)
\(992\) − 142.360i − 0.143509i
\(993\) 0 0
\(994\) 45.4170 0.0456911
\(995\) 0 0
\(996\) 0 0
\(997\) −461.012 −0.462399 −0.231200 0.972906i \(-0.574265\pi\)
−0.231200 + 0.972906i \(0.574265\pi\)
\(998\) − 1064.63i − 1.06677i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.3.e.e.701.2 4
3.2 odd 2 inner 3150.3.e.e.701.4 4
5.2 odd 4 3150.3.c.b.449.7 8
5.3 odd 4 3150.3.c.b.449.1 8
5.4 even 2 126.3.b.a.71.4 yes 4
15.2 even 4 3150.3.c.b.449.4 8
15.8 even 4 3150.3.c.b.449.6 8
15.14 odd 2 126.3.b.a.71.1 4
20.19 odd 2 1008.3.d.a.449.3 4
35.4 even 6 882.3.s.e.863.1 8
35.9 even 6 882.3.s.e.557.4 8
35.19 odd 6 882.3.s.i.557.3 8
35.24 odd 6 882.3.s.i.863.2 8
35.34 odd 2 882.3.b.f.197.3 4
40.19 odd 2 4032.3.d.j.449.2 4
40.29 even 2 4032.3.d.i.449.2 4
45.4 even 6 1134.3.q.c.1079.2 8
45.14 odd 6 1134.3.q.c.1079.3 8
45.29 odd 6 1134.3.q.c.701.2 8
45.34 even 6 1134.3.q.c.701.3 8
60.59 even 2 1008.3.d.a.449.2 4
105.44 odd 6 882.3.s.e.557.1 8
105.59 even 6 882.3.s.i.863.3 8
105.74 odd 6 882.3.s.e.863.4 8
105.89 even 6 882.3.s.i.557.2 8
105.104 even 2 882.3.b.f.197.2 4
120.29 odd 2 4032.3.d.i.449.3 4
120.59 even 2 4032.3.d.j.449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.b.a.71.1 4 15.14 odd 2
126.3.b.a.71.4 yes 4 5.4 even 2
882.3.b.f.197.2 4 105.104 even 2
882.3.b.f.197.3 4 35.34 odd 2
882.3.s.e.557.1 8 105.44 odd 6
882.3.s.e.557.4 8 35.9 even 6
882.3.s.e.863.1 8 35.4 even 6
882.3.s.e.863.4 8 105.74 odd 6
882.3.s.i.557.2 8 105.89 even 6
882.3.s.i.557.3 8 35.19 odd 6
882.3.s.i.863.2 8 35.24 odd 6
882.3.s.i.863.3 8 105.59 even 6
1008.3.d.a.449.2 4 60.59 even 2
1008.3.d.a.449.3 4 20.19 odd 2
1134.3.q.c.701.2 8 45.29 odd 6
1134.3.q.c.701.3 8 45.34 even 6
1134.3.q.c.1079.2 8 45.4 even 6
1134.3.q.c.1079.3 8 45.14 odd 6
3150.3.c.b.449.1 8 5.3 odd 4
3150.3.c.b.449.4 8 15.2 even 4
3150.3.c.b.449.6 8 15.8 even 4
3150.3.c.b.449.7 8 5.2 odd 4
3150.3.e.e.701.2 4 1.1 even 1 trivial
3150.3.e.e.701.4 4 3.2 odd 2 inner
4032.3.d.i.449.2 4 40.29 even 2
4032.3.d.i.449.3 4 120.29 odd 2
4032.3.d.j.449.2 4 40.19 odd 2
4032.3.d.j.449.3 4 120.59 even 2