Newspace parameters
Level: | \( N \) | \(=\) | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 3150.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(85.8312832735\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | 16.0.9671731157401600000000.1 |
Defining polynomial: |
\( x^{16} + 7x^{12} + 753x^{8} + 112x^{4} + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{28} \) |
Twist minimal: | no (minimal twist has level 630) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 7x^{12} + 753x^{8} + 112x^{4} + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{12} + 105\nu^{8} + 15\nu^{4} + 42056 ) / 9396 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -14\nu^{12} - 96\nu^{8} - 10752\nu^{4} - 815 ) / 2349 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{12} - 7\nu^{8} - 737\nu^{4} - 56 ) / 36 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 33\nu^{14} + 247\nu^{10} + 25025\nu^{6} + 18304\nu^{2} ) / 8352 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 245 \nu^{15} - 374 \nu^{13} + 1419 \nu^{11} - 2490 \nu^{9} + 182157 \nu^{7} - 278358 \nu^{5} - 185272 \nu^{3} + 39712 \nu ) / 150336 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 245 \nu^{15} + 374 \nu^{13} + 1419 \nu^{11} + 2490 \nu^{9} + 182157 \nu^{7} + 278358 \nu^{5} - 185272 \nu^{3} - 39712 \nu ) / 150336 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 23\nu^{14} + 177\nu^{10} + 17367\nu^{6} + 12704\nu^{2} ) / 2592 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 31\nu^{14} + 201\nu^{10} + 23295\nu^{6} - 10112\nu^{2} ) / 2592 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 91 \nu^{15} + 137 \nu^{13} + 537 \nu^{11} + 927 \nu^{9} + 67887 \nu^{7} + 103737 \nu^{5} - 69044 \nu^{3} - 14800 \nu ) / 25056 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 91 \nu^{15} - 137 \nu^{13} + 537 \nu^{11} - 927 \nu^{9} + 67887 \nu^{7} - 103737 \nu^{5} - 69044 \nu^{3} + 14800 \nu ) / 12528 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 403 \nu^{15} - 122 \nu^{13} + 2925 \nu^{11} - 1110 \nu^{9} + 303675 \nu^{7} - 92826 \nu^{5} + 115960 \nu^{3} - 149024 \nu ) / 50112 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 403 \nu^{15} + 122 \nu^{13} + 2925 \nu^{11} + 1110 \nu^{9} + 303675 \nu^{7} + 92826 \nu^{5} + 115960 \nu^{3} + 149024 \nu ) / 50112 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 25\nu^{14} + 159\nu^{10} + 18649\nu^{6} - 8096\nu^{2} ) / 928 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 1349 \nu^{15} + 407 \nu^{13} + 9735 \nu^{11} + 3201 \nu^{9} + 1018545 \nu^{7} + 311271 \nu^{5} + 388916 \nu^{3} + 499664 \nu ) / 75168 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 1349 \nu^{15} + 407 \nu^{13} - 9735 \nu^{11} + 3201 \nu^{9} - 1018545 \nu^{7} + 311271 \nu^{5} - 388916 \nu^{3} + 499664 \nu ) / 37584 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{15} + 2\beta_{14} - 2\beta_{12} + 2\beta_{11} + \beta_{10} - 2\beta_{9} + 2\beta_{6} - 2\beta_{5} ) / 16 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{13} - 3\beta_{8} - 3\beta_{7} + 9\beta_{4} ) / 8 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -\beta_{15} + 2\beta_{14} - 4\beta_{12} - 4\beta_{11} - 5\beta_{10} - 10\beta_{9} + 20\beta_{6} + 20\beta_{5} ) / 8 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 9\beta_{3} - 42\beta_{2} + 3\beta _1 - 14 ) / 8 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 5 \beta_{15} + 10 \beta_{14} - 22 \beta_{12} + 22 \beta_{11} - 55 \beta_{10} + 110 \beta_{9} - 242 \beta_{6} + 242 \beta_{5} ) / 16 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -20\beta_{13} + 45\beta_{8} - 36\beta_{7} + 81\beta_{4} ) / 4 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 91 \beta_{15} + 182 \beta_{14} - 406 \beta_{12} - 406 \beta_{11} + 169 \beta_{10} + 338 \beta_{9} - 754 \beta_{6} - 754 \beta_{5} ) / 16 \)
|
\(\nu^{8}\) | \(=\) |
\( ( -63\beta_{3} + 282\beta_{2} + 651\beta _1 - 2914 ) / 8 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 289 \beta_{15} - 578 \beta_{14} + 1292 \beta_{12} - 1292 \beta_{11} - 85 \beta_{10} + 170 \beta_{9} - 380 \beta_{6} + 380 \beta_{5} ) / 8 \)
|
\(\nu^{10}\) | \(=\) |
\( ( -605\beta_{13} + 1353\beta_{8} + 3135\beta_{7} - 7011\beta_{4} ) / 8 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 2047 \beta_{15} - 4094 \beta_{14} + 9154 \beta_{12} + 9154 \beta_{11} + 5963 \beta_{10} + 11926 \beta_{9} - 26666 \beta_{6} - 26666 \beta_{5} ) / 16 \)
|
\(\nu^{12}\) | \(=\) |
\( ( -1620\beta_{3} + 7245\beta_{2} - 1692\beta _1 + 7567 ) / 2 \)
|
\(\nu^{13}\) | \(=\) |
\( ( 233 \beta_{15} + 466 \beta_{14} - 1042 \beta_{12} + 1042 \beta_{11} + 42173 \beta_{10} - 84346 \beta_{9} + 188602 \beta_{6} - 188602 \beta_{5} ) / 16 \)
|
\(\nu^{14}\) | \(=\) |
\( ( 34307\beta_{13} - 76713\beta_{8} + 32799\beta_{7} - 73341\beta_{4} ) / 8 \)
|
\(\nu^{15}\) | \(=\) |
\( ( 27145 \beta_{15} - 54290 \beta_{14} + 121396 \beta_{12} + 121396 \beta_{11} - 83875 \beta_{10} - 167750 \beta_{9} + 375100 \beta_{6} + 375100 \beta_{5} ) / 8 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(451\) | \(2801\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
449.1 |
|
−1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.2 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.3 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.4 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.5 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.6 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.7 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.8 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.9 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.10 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.11 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.12 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.13 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.14 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.15 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.16 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3150.3.c.f | 16 | |
3.b | odd | 2 | 1 | inner | 3150.3.c.f | 16 | |
5.b | even | 2 | 1 | inner | 3150.3.c.f | 16 | |
5.c | odd | 4 | 1 | 630.3.e.b | ✓ | 8 | |
5.c | odd | 4 | 1 | 3150.3.e.f | 8 | ||
15.d | odd | 2 | 1 | inner | 3150.3.c.f | 16 | |
15.e | even | 4 | 1 | 630.3.e.b | ✓ | 8 | |
15.e | even | 4 | 1 | 3150.3.e.f | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
630.3.e.b | ✓ | 8 | 5.c | odd | 4 | 1 | |
630.3.e.b | ✓ | 8 | 15.e | even | 4 | 1 | |
3150.3.c.f | 16 | 1.a | even | 1 | 1 | trivial | |
3150.3.c.f | 16 | 3.b | odd | 2 | 1 | inner | |
3150.3.c.f | 16 | 5.b | even | 2 | 1 | inner | |
3150.3.c.f | 16 | 15.d | odd | 2 | 1 | inner | |
3150.3.e.f | 8 | 5.c | odd | 4 | 1 | ||
3150.3.e.f | 8 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{8} + 384T_{11}^{6} + 44832T_{11}^{4} + 1673216T_{11}^{2} + 15872256 \)
acting on \(S_{3}^{\mathrm{new}}(3150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2)^{8} \)
$3$
\( T^{16} \)
$5$
\( T^{16} \)
$7$
\( (T^{2} + 7)^{8} \)
$11$
\( (T^{8} + 384 T^{6} + 44832 T^{4} + \cdots + 15872256)^{2} \)
$13$
\( (T^{8} + 792 T^{6} + 149208 T^{4} + \cdots + 14470416)^{2} \)
$17$
\( (T^{8} - 1152 T^{6} + 117888 T^{4} + \cdots + 331776)^{2} \)
$19$
\( (T^{4} - 40 T^{3} + 20 T^{2} + 7600 T + 24900)^{4} \)
$23$
\( (T^{8} - 616 T^{6} + 112792 T^{4} + \cdots + 80353296)^{2} \)
$29$
\( (T^{8} + 4136 T^{6} + \cdots + 182633150736)^{2} \)
$31$
\( (T^{4} - 56 T^{3} - 1468 T^{2} + \cdots - 53724)^{4} \)
$37$
\( (T^{8} + 9744 T^{6} + \cdots + 17685591019776)^{2} \)
$41$
\( (T^{8} + 8656 T^{6} + \cdots + 11776317808896)^{2} \)
$43$
\( (T^{8} + 11088 T^{6} + \cdots + 23646201405696)^{2} \)
$47$
\( (T^{8} - 7264 T^{6} + \cdots + 147161235456)^{2} \)
$53$
\( (T^{8} - 8464 T^{6} + \cdots + 8432658441216)^{2} \)
$59$
\( (T^{8} + 16816 T^{6} + \cdots + 7297000079616)^{2} \)
$61$
\( (T^{4} + 72 T^{3} - 3032 T^{2} + \cdots + 5776)^{4} \)
$67$
\( (T^{8} + 10384 T^{6} + \cdots + 913966592256)^{2} \)
$71$
\( (T^{8} + 11136 T^{6} + \cdots + 13463498301696)^{2} \)
$73$
\( (T^{8} + 21208 T^{6} + \cdots + 36190379032336)^{2} \)
$79$
\( (T^{4} - 32 T^{3} - 13840 T^{2} + \cdots - 14801856)^{4} \)
$83$
\( (T^{8} - 50528 T^{6} + \cdots + 36\!\cdots\!96)^{2} \)
$89$
\( (T^{8} + 14448 T^{6} + \cdots + 416365629696)^{2} \)
$97$
\( (T^{8} + 36376 T^{6} + \cdots + 615175117820176)^{2} \)
show more
show less