Newspace parameters
Level: | \( N \) | \(=\) | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 3150.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(85.8312832735\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | 16.0.9671731157401600000000.1 |
Defining polynomial: |
\( x^{16} + 7x^{12} + 753x^{8} + 112x^{4} + 256 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{28}\cdot 3^{4} \) |
Twist minimal: | no (minimal twist has level 630) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 7x^{12} + 753x^{8} + 112x^{4} + 256 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{12} + 105\nu^{8} + 15\nu^{4} + 42056 ) / 3132 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 14\nu^{12} + 96\nu^{8} + 10752\nu^{4} + 815 ) / 2349 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -33\nu^{14} - 247\nu^{10} - 25025\nu^{6} - 18304\nu^{2} ) / 8352 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 245 \nu^{15} - 374 \nu^{13} + 1419 \nu^{11} - 2490 \nu^{9} + 182157 \nu^{7} - 278358 \nu^{5} - 185272 \nu^{3} + 39712 \nu ) / 150336 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 245 \nu^{15} + 374 \nu^{13} + 1419 \nu^{11} + 2490 \nu^{9} + 182157 \nu^{7} + 278358 \nu^{5} - 185272 \nu^{3} - 39712 \nu ) / 150336 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 31\nu^{14} + 201\nu^{10} + 23295\nu^{6} - 10112\nu^{2} ) / 2592 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 23\nu^{14} + 72\nu^{12} + 177\nu^{10} + 504\nu^{8} + 17367\nu^{6} + 53064\nu^{4} + 12704\nu^{2} + 4032 ) / 2592 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 23\nu^{14} + 177\nu^{10} + 17367\nu^{6} + 12704\nu^{2} ) / 864 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 2025 \nu^{14} + 8 \nu^{12} + 12879 \nu^{10} - 840 \nu^{8} + 1510569 \nu^{6} - 120 \nu^{4} - 655776 \nu^{2} - 336448 ) / 75168 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 403 \nu^{15} + 122 \nu^{13} - 2925 \nu^{11} + 1110 \nu^{9} - 303675 \nu^{7} + 92826 \nu^{5} - 115960 \nu^{3} + 149024 \nu ) / 50112 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 403 \nu^{15} + 122 \nu^{13} + 2925 \nu^{11} + 1110 \nu^{9} + 303675 \nu^{7} + 92826 \nu^{5} + 115960 \nu^{3} + 149024 \nu ) / 50112 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 257 \nu^{15} + 2051 \nu^{13} + 3291 \nu^{11} + 14325 \nu^{9} + 203901 \nu^{7} + 1556115 \nu^{5} + 1217444 \nu^{3} + 322064 \nu ) / 75168 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 91\nu^{15} + 137\nu^{13} + 537\nu^{11} + 927\nu^{9} + 67887\nu^{7} + 103737\nu^{5} - 69044\nu^{3} - 14800\nu ) / 8352 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 1895 \nu^{15} - 415 \nu^{13} + 12957 \nu^{11} - 2361 \nu^{9} + 1425867 \nu^{7} - 311151 \nu^{5} - 25348 \nu^{3} + 588464 \nu ) / 75168 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 2425 \nu^{15} + 1225 \nu^{13} - 17859 \nu^{11} + 9183 \nu^{9} - 1833429 \nu^{7} + 933753 \nu^{5} - 984964 \nu^{3} + 954928 \nu ) / 75168 \)
|
\(\nu\) | \(=\) |
\( ( 3\beta_{15} + 5\beta_{14} - 3\beta_{13} + \beta_{12} - 6\beta_{11} - 6\beta_{10} + 6\beta_{5} - 6\beta_{4} ) / 48 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 3\beta_{9} - 3\beta_{8} - 9\beta_{6} - 27\beta_{3} + \beta_1 ) / 24 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -3\beta_{15} - \beta_{14} - 9\beta_{13} + 7\beta_{12} - 12\beta_{11} + 12\beta_{10} + 60\beta_{5} + 60\beta_{4} ) / 24 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 3\beta_{8} - 9\beta_{7} + 42\beta_{2} + \beta _1 - 14 ) / 8 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 15 \beta_{15} - 35 \beta_{14} + 105 \beta_{13} + 65 \beta_{12} - 66 \beta_{11} - 66 \beta_{10} - 726 \beta_{5} + 726 \beta_{4} ) / 48 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -60\beta_{9} - 36\beta_{8} + 135\beta_{6} - 243\beta_{3} - 20\beta_1 ) / 12 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 273 \beta_{15} + 533 \beta_{14} + 429 \beta_{13} + 13 \beta_{12} - 1218 \beta_{11} + 1218 \beta_{10} - 2262 \beta_{5} - 2262 \beta_{4} ) / 48 \)
|
\(\nu^{8}\) | \(=\) |
\( ( -21\beta_{8} + 63\beta_{7} - 282\beta_{2} + 217\beta _1 - 2914 ) / 8 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 867 \beta_{15} - 1241 \beta_{14} + 459 \beta_{13} - 493 \beta_{12} + 3876 \beta_{11} + 3876 \beta_{10} - 1140 \beta_{5} + 1140 \beta_{4} ) / 24 \)
|
\(\nu^{10}\) | \(=\) |
\( ( -1815\beta_{9} + 3135\beta_{8} + 4059\beta_{6} + 21033\beta_{3} - 605\beta_1 ) / 24 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 6141 \beta_{15} - 2225 \beta_{14} + 9879 \beta_{13} - 10057 \beta_{12} + 27462 \beta_{11} - 27462 \beta_{10} - 79998 \beta_{5} - 79998 \beta_{4} ) / 48 \)
|
\(\nu^{12}\) | \(=\) |
\( ( -540\beta_{8} + 1620\beta_{7} - 7245\beta_{2} - 564\beta _1 + 7567 ) / 2 \)
|
\(\nu^{13}\) | \(=\) |
\( ( 699 \beta_{15} + 43105 \beta_{14} - 84579 \beta_{13} - 41707 \beta_{12} - 3126 \beta_{11} - 3126 \beta_{10} + 565806 \beta_{5} - 565806 \beta_{4} ) / 48 \)
|
\(\nu^{14}\) | \(=\) |
\( ( 102921\beta_{9} + 32799\beta_{8} - 230139\beta_{6} + 220023\beta_{3} + 34307\beta_1 ) / 24 \)
|
\(\nu^{15}\) | \(=\) |
\( ( 81435 \beta_{15} - 192455 \beta_{14} - 194895 \beta_{13} + 29585 \beta_{12} + 364188 \beta_{11} - 364188 \beta_{10} + 1125300 \beta_{5} + 1125300 \beta_{4} ) / 24 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(451\) | \(2801\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
449.1 |
|
−1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.2 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.3 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.4 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.5 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.6 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.7 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.8 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.9 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.10 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.11 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.12 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.13 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.14 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.15 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.16 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3150.3.c.d | 16 | |
3.b | odd | 2 | 1 | inner | 3150.3.c.d | 16 | |
5.b | even | 2 | 1 | inner | 3150.3.c.d | 16 | |
5.c | odd | 4 | 1 | 630.3.e.a | ✓ | 8 | |
5.c | odd | 4 | 1 | 3150.3.e.i | 8 | ||
15.d | odd | 2 | 1 | inner | 3150.3.c.d | 16 | |
15.e | even | 4 | 1 | 630.3.e.a | ✓ | 8 | |
15.e | even | 4 | 1 | 3150.3.e.i | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
630.3.e.a | ✓ | 8 | 5.c | odd | 4 | 1 | |
630.3.e.a | ✓ | 8 | 15.e | even | 4 | 1 | |
3150.3.c.d | 16 | 1.a | even | 1 | 1 | trivial | |
3150.3.c.d | 16 | 3.b | odd | 2 | 1 | inner | |
3150.3.c.d | 16 | 5.b | even | 2 | 1 | inner | |
3150.3.c.d | 16 | 15.d | odd | 2 | 1 | inner | |
3150.3.e.i | 8 | 5.c | odd | 4 | 1 | ||
3150.3.e.i | 8 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{4} + 32T_{11}^{2} + 144 \)
acting on \(S_{3}^{\mathrm{new}}(3150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2)^{8} \)
$3$
\( T^{16} \)
$5$
\( T^{16} \)
$7$
\( (T^{2} + 7)^{8} \)
$11$
\( (T^{4} + 32 T^{2} + 144)^{4} \)
$13$
\( (T^{8} + 504 T^{6} + 58776 T^{4} + \cdots + 5588496)^{2} \)
$17$
\( (T^{8} - 896 T^{6} + 139392 T^{4} + \cdots + 26873856)^{2} \)
$19$
\( (T^{4} + 40 T^{3} + 196 T^{2} + \cdots - 29916)^{4} \)
$23$
\( (T^{8} - 2408 T^{6} + \cdots + 75666805776)^{2} \)
$29$
\( (T^{8} + 2792 T^{6} + \cdots + 19925016336)^{2} \)
$31$
\( (T^{4} + 56 T^{3} - 300 T^{2} + \cdots - 111676)^{4} \)
$37$
\( (T^{8} + 2512 T^{6} + 1562208 T^{4} + \cdots + 58736896)^{2} \)
$41$
\( (T^{8} + 5776 T^{6} + \cdots + 1274875842816)^{2} \)
$43$
\( (T^{8} + 5584 T^{6} + \cdots + 7578747136)^{2} \)
$47$
\( (T^{8} - 11488 T^{6} + \cdots + 3582449565696)^{2} \)
$53$
\( (T^{8} - 12112 T^{6} + \cdots + 58107995136)^{2} \)
$59$
\( (T^{8} + 9328 T^{6} + \cdots + 21234991124736)^{2} \)
$61$
\( (T^{4} + 40 T^{3} - 3736 T^{2} + \cdots - 42096)^{4} \)
$67$
\( (T^{8} + 14096 T^{6} + \cdots + 75851279421696)^{2} \)
$71$
\( (T^{8} + 23936 T^{6} + \cdots + 842087039037696)^{2} \)
$73$
\( (T^{8} + 22200 T^{6} + \cdots + 48965006250000)^{2} \)
$79$
\( (T^{4} - 7376 T^{2} + 7795264)^{4} \)
$83$
\( (T^{8} - 5728 T^{6} + \cdots + 2702420361216)^{2} \)
$89$
\( (T^{8} + 26224 T^{6} + \cdots + 70331973325056)^{2} \)
$97$
\( (T^{8} + 45688 T^{6} + \cdots + 348149175467536)^{2} \)
show more
show less