Newspace parameters
Level: | \( N \) | \(=\) | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 3150.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(85.8312832735\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.157351936.1 |
Defining polynomial: |
\( x^{8} + x^{4} + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + x^{4} + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 2\nu^{4} + 1 ) / 3 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} + 5\nu^{2} ) / 12 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{7} + 4\nu^{5} + 7\nu^{3} - 4\nu ) / 24 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{6} + 3\nu^{2} ) / 4 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{7} + 2\nu^{5} - 5\nu^{3} + 10\nu ) / 12 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{7} - 4\nu^{5} + 7\nu^{3} + 4\nu ) / 24 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} + 2\nu^{5} + 5\nu^{3} + 10\nu ) / 12 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} + \beta_{6} + \beta_{5} - \beta_{3} ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{4} + 3\beta_{2} ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{7} + 2\beta_{6} - \beta_{5} + 2\beta_{3} ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 3\beta _1 - 1 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( \beta_{7} - 5\beta_{6} + \beta_{5} + 5\beta_{3} ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -5\beta_{4} + 9\beta_{2} ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 7\beta_{7} - 10\beta_{6} - 7\beta_{5} - 10\beta_{3} ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(451\) | \(2801\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
449.1 |
|
−1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||
449.2 | −1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | −2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
449.3 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
449.4 | −1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | −2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
449.5 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
449.6 | 1.41421 | 0 | 2.00000 | 0 | 0 | − | 2.64575i | 2.82843 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||
449.7 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
449.8 | 1.41421 | 0 | 2.00000 | 0 | 0 | 2.64575i | 2.82843 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3150.3.c.c | 8 | |
3.b | odd | 2 | 1 | inner | 3150.3.c.c | 8 | |
5.b | even | 2 | 1 | inner | 3150.3.c.c | 8 | |
5.c | odd | 4 | 1 | 3150.3.e.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 3150.3.e.d | yes | 4 | |
15.d | odd | 2 | 1 | inner | 3150.3.c.c | 8 | |
15.e | even | 4 | 1 | 3150.3.e.a | ✓ | 4 | |
15.e | even | 4 | 1 | 3150.3.e.d | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3150.3.c.c | 8 | 1.a | even | 1 | 1 | trivial | |
3150.3.c.c | 8 | 3.b | odd | 2 | 1 | inner | |
3150.3.c.c | 8 | 5.b | even | 2 | 1 | inner | |
3150.3.c.c | 8 | 15.d | odd | 2 | 1 | inner | |
3150.3.e.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
3150.3.e.a | ✓ | 4 | 15.e | even | 4 | 1 | |
3150.3.e.d | yes | 4 | 5.c | odd | 4 | 1 | |
3150.3.e.d | yes | 4 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{4} + 464T_{11}^{2} + 12321 \)
acting on \(S_{3}^{\mathrm{new}}(3150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2)^{4} \)
$3$
\( T^{8} \)
$5$
\( T^{8} \)
$7$
\( (T^{2} + 7)^{4} \)
$11$
\( (T^{4} + 464 T^{2} + 12321)^{2} \)
$13$
\( (T^{4} + 32 T^{2} + 4)^{2} \)
$17$
\( (T^{4} - 1268 T^{2} + 272484)^{2} \)
$19$
\( (T^{2} - 30 T + 50)^{4} \)
$23$
\( (T^{4} - 1184 T^{2} + 349281)^{2} \)
$29$
\( (T^{4} + 872 T^{2} + 8649)^{2} \)
$31$
\( (T^{2} - 8 T - 432)^{4} \)
$37$
\( (T^{4} + 1918 T^{2} + 370881)^{2} \)
$41$
\( (T^{4} + 2304 T^{2} + 1245456)^{2} \)
$43$
\( (T^{4} + 6554 T^{2} + 7689529)^{2} \)
$47$
\( (T^{4} - 6876 T^{2} + 8191044)^{2} \)
$53$
\( (T^{4} - 7604 T^{2} + 2842596)^{2} \)
$59$
\( (T^{4} + 9972 T^{2} + 16695396)^{2} \)
$61$
\( (T^{2} + 44 T - 3548)^{4} \)
$67$
\( (T^{4} + 3574 T^{2} + 1212201)^{2} \)
$71$
\( (T^{4} + 13904 T^{2} + 35892081)^{2} \)
$73$
\( (T^{4} + 18032 T^{2} + 66161956)^{2} \)
$79$
\( (T^{2} + 72 T - 1231)^{4} \)
$83$
\( (T^{4} - 39456 T^{2} + \cdots + 379314576)^{2} \)
$89$
\( (T^{4} + 20636 T^{2} + 4955076)^{2} \)
$97$
\( (T^{4} + 21032 T^{2} + 58186384)^{2} \)
show more
show less