Properties

Label 3150.2.m.l.1457.1
Level 3150
Weight 2
Character 3150.1457
Analytic conductor 25.153
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.1
Root \(-0.965926 - 0.258819i\)
Character \(\chi\) = 3150.1457
Dual form 3150.2.m.l.2843.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-0.707107 - 0.707107i) q^{7} +(0.707107 + 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-0.707107 - 0.707107i) q^{7} +(0.707107 + 0.707107i) q^{8} -3.41421i q^{11} +(-1.43916 + 1.43916i) q^{13} +1.00000 q^{14} -1.00000 q^{16} +(-1.54258 + 1.54258i) q^{17} +2.04989i q^{19} +(2.41421 + 2.41421i) q^{22} +(-1.15660 - 1.15660i) q^{23} -2.03528i q^{26} +(-0.707107 + 0.707107i) q^{28} +8.04524 q^{29} -6.37429 q^{31} +(0.707107 - 0.707107i) q^{32} -2.18154i q^{34} +(0.0498881 + 0.0498881i) q^{37} +(-1.44949 - 1.44949i) q^{38} -7.94887i q^{41} +(-4.65357 + 4.65357i) q^{43} -3.41421 q^{44} +1.63567 q^{46} +(-1.39960 + 1.39960i) q^{47} +1.00000i q^{49} +(1.43916 + 1.43916i) q^{52} +(2.97506 + 2.97506i) q^{53} -1.00000i q^{56} +(-5.68885 + 5.68885i) q^{58} -4.25725 q^{59} -6.88953 q^{61} +(4.50731 - 4.50731i) q^{62} +1.00000i q^{64} +(5.84304 + 5.84304i) q^{67} +(1.54258 + 1.54258i) q^{68} +2.92820i q^{71} +(-5.97469 + 5.97469i) q^{73} -0.0705524 q^{74} +2.04989 q^{76} +(-2.41421 + 2.41421i) q^{77} +11.6410i q^{79} +(5.62070 + 5.62070i) q^{82} +(-1.52797 - 1.52797i) q^{83} -6.58114i q^{86} +(2.41421 - 2.41421i) q^{88} +5.72741 q^{89} +2.03528 q^{91} +(-1.15660 + 1.15660i) q^{92} -1.97934i q^{94} +(9.64564 + 9.64564i) q^{97} +(-0.707107 - 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 8q^{13} + 8q^{14} - 8q^{16} + 8q^{22} + 16q^{23} - 16q^{37} + 8q^{38} - 8q^{43} - 16q^{44} + 8q^{46} - 8q^{47} - 8q^{52} + 32q^{53} - 8q^{58} + 8q^{59} - 32q^{61} + 32q^{62} + 16q^{67} + 16q^{74} - 8q^{77} - 8q^{82} - 8q^{83} + 8q^{88} - 16q^{89} + 8q^{91} + 16q^{92} + 16q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.41421i 1.02942i −0.857363 0.514712i \(-0.827899\pi\)
0.857363 0.514712i \(-0.172101\pi\)
\(12\) 0 0
\(13\) −1.43916 + 1.43916i −0.399150 + 0.399150i −0.877933 0.478783i \(-0.841078\pi\)
0.478783 + 0.877933i \(0.341078\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.54258 + 1.54258i −0.374131 + 0.374131i −0.868979 0.494848i \(-0.835224\pi\)
0.494848 + 0.868979i \(0.335224\pi\)
\(18\) 0 0
\(19\) 2.04989i 0.470277i 0.971962 + 0.235138i \(0.0755543\pi\)
−0.971962 + 0.235138i \(0.924446\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.41421 + 2.41421i 0.514712 + 0.514712i
\(23\) −1.15660 1.15660i −0.241167 0.241167i 0.576166 0.817333i \(-0.304548\pi\)
−0.817333 + 0.576166i \(0.804548\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.03528i 0.399150i
\(27\) 0 0
\(28\) −0.707107 + 0.707107i −0.133631 + 0.133631i
\(29\) 8.04524 1.49396 0.746982 0.664844i \(-0.231502\pi\)
0.746982 + 0.664844i \(0.231502\pi\)
\(30\) 0 0
\(31\) −6.37429 −1.14486 −0.572428 0.819955i \(-0.693999\pi\)
−0.572428 + 0.819955i \(0.693999\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 2.18154i 0.374131i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.0498881 + 0.0498881i 0.00820155 + 0.00820155i 0.711196 0.702994i \(-0.248154\pi\)
−0.702994 + 0.711196i \(0.748154\pi\)
\(38\) −1.44949 1.44949i −0.235138 0.235138i
\(39\) 0 0
\(40\) 0 0
\(41\) 7.94887i 1.24140i −0.784046 0.620702i \(-0.786848\pi\)
0.784046 0.620702i \(-0.213152\pi\)
\(42\) 0 0
\(43\) −4.65357 + 4.65357i −0.709663 + 0.709663i −0.966464 0.256801i \(-0.917331\pi\)
0.256801 + 0.966464i \(0.417331\pi\)
\(44\) −3.41421 −0.514712
\(45\) 0 0
\(46\) 1.63567 0.241167
\(47\) −1.39960 + 1.39960i −0.204153 + 0.204153i −0.801777 0.597624i \(-0.796112\pi\)
0.597624 + 0.801777i \(0.296112\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.43916 + 1.43916i 0.199575 + 0.199575i
\(53\) 2.97506 + 2.97506i 0.408655 + 0.408655i 0.881269 0.472614i \(-0.156690\pi\)
−0.472614 + 0.881269i \(0.656690\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000i 0.133631i
\(57\) 0 0
\(58\) −5.68885 + 5.68885i −0.746982 + 0.746982i
\(59\) −4.25725 −0.554247 −0.277124 0.960834i \(-0.589381\pi\)
−0.277124 + 0.960834i \(0.589381\pi\)
\(60\) 0 0
\(61\) −6.88953 −0.882114 −0.441057 0.897479i \(-0.645396\pi\)
−0.441057 + 0.897479i \(0.645396\pi\)
\(62\) 4.50731 4.50731i 0.572428 0.572428i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) 5.84304 + 5.84304i 0.713841 + 0.713841i 0.967337 0.253496i \(-0.0815804\pi\)
−0.253496 + 0.967337i \(0.581580\pi\)
\(68\) 1.54258 + 1.54258i 0.187066 + 0.187066i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.92820i 0.347514i 0.984789 + 0.173757i \(0.0555907\pi\)
−0.984789 + 0.173757i \(0.944409\pi\)
\(72\) 0 0
\(73\) −5.97469 + 5.97469i −0.699285 + 0.699285i −0.964256 0.264971i \(-0.914637\pi\)
0.264971 + 0.964256i \(0.414637\pi\)
\(74\) −0.0705524 −0.00820155
\(75\) 0 0
\(76\) 2.04989 0.235138
\(77\) −2.41421 + 2.41421i −0.275125 + 0.275125i
\(78\) 0 0
\(79\) 11.6410i 1.30971i 0.755753 + 0.654857i \(0.227271\pi\)
−0.755753 + 0.654857i \(0.772729\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.62070 + 5.62070i 0.620702 + 0.620702i
\(83\) −1.52797 1.52797i −0.167717 0.167717i 0.618258 0.785975i \(-0.287839\pi\)
−0.785975 + 0.618258i \(0.787839\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.58114i 0.709663i
\(87\) 0 0
\(88\) 2.41421 2.41421i 0.257356 0.257356i
\(89\) 5.72741 0.607104 0.303552 0.952815i \(-0.401827\pi\)
0.303552 + 0.952815i \(0.401827\pi\)
\(90\) 0 0
\(91\) 2.03528 0.213355
\(92\) −1.15660 + 1.15660i −0.120584 + 0.120584i
\(93\) 0 0
\(94\) 1.97934i 0.204153i
\(95\) 0 0
\(96\) 0 0
\(97\) 9.64564 + 9.64564i 0.979367 + 0.979367i 0.999791 0.0204248i \(-0.00650187\pi\)
−0.0204248 + 0.999791i \(0.506502\pi\)
\(98\) −0.707107 0.707107i −0.0714286 0.0714286i
\(99\) 0 0
\(100\) 0 0
\(101\) 16.7420i 1.66589i −0.553353 0.832947i \(-0.686652\pi\)
0.553353 0.832947i \(-0.313348\pi\)
\(102\) 0 0
\(103\) −8.65597 + 8.65597i −0.852898 + 0.852898i −0.990489 0.137591i \(-0.956064\pi\)
0.137591 + 0.990489i \(0.456064\pi\)
\(104\) −2.03528 −0.199575
\(105\) 0 0
\(106\) −4.20736 −0.408655
\(107\) −10.9489 + 10.9489i −1.05847 + 1.05847i −0.0602858 + 0.998181i \(0.519201\pi\)
−0.998181 + 0.0602858i \(0.980799\pi\)
\(108\) 0 0
\(109\) 5.23659i 0.501574i 0.968042 + 0.250787i \(0.0806894\pi\)
−0.968042 + 0.250787i \(0.919311\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.707107 + 0.707107i 0.0668153 + 0.0668153i
\(113\) −1.59575 1.59575i −0.150116 0.150116i 0.628054 0.778170i \(-0.283852\pi\)
−0.778170 + 0.628054i \(0.783852\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.04524i 0.746982i
\(117\) 0 0
\(118\) 3.01033 3.01033i 0.277124 0.277124i
\(119\) 2.18154 0.199981
\(120\) 0 0
\(121\) −0.656854 −0.0597140
\(122\) 4.87163 4.87163i 0.441057 0.441057i
\(123\) 0 0
\(124\) 6.37429i 0.572428i
\(125\) 0 0
\(126\) 0 0
\(127\) 7.72084 + 7.72084i 0.685114 + 0.685114i 0.961148 0.276034i \(-0.0890203\pi\)
−0.276034 + 0.961148i \(0.589020\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 7.38426i 0.645166i 0.946541 + 0.322583i \(0.104551\pi\)
−0.946541 + 0.322583i \(0.895449\pi\)
\(132\) 0 0
\(133\) 1.44949 1.44949i 0.125687 0.125687i
\(134\) −8.26330 −0.713841
\(135\) 0 0
\(136\) −2.18154 −0.187066
\(137\) −12.2268 + 12.2268i −1.04460 + 1.04460i −0.0456471 + 0.998958i \(0.514535\pi\)
−0.998958 + 0.0456471i \(0.985465\pi\)
\(138\) 0 0
\(139\) 15.2621i 1.29451i −0.762273 0.647256i \(-0.775917\pi\)
0.762273 0.647256i \(-0.224083\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.07055 2.07055i −0.173757 0.173757i
\(143\) 4.91359 + 4.91359i 0.410895 + 0.410895i
\(144\) 0 0
\(145\) 0 0
\(146\) 8.44949i 0.699285i
\(147\) 0 0
\(148\) 0.0498881 0.0498881i 0.00410077 0.00410077i
\(149\) 6.01602 0.492852 0.246426 0.969162i \(-0.420744\pi\)
0.246426 + 0.969162i \(0.420744\pi\)
\(150\) 0 0
\(151\) −5.12096 −0.416737 −0.208369 0.978050i \(-0.566815\pi\)
−0.208369 + 0.978050i \(0.566815\pi\)
\(152\) −1.44949 + 1.44949i −0.117569 + 0.117569i
\(153\) 0 0
\(154\) 3.41421i 0.275125i
\(155\) 0 0
\(156\) 0 0
\(157\) −8.79920 8.79920i −0.702253 0.702253i 0.262641 0.964894i \(-0.415407\pi\)
−0.964894 + 0.262641i \(0.915407\pi\)
\(158\) −8.23143 8.23143i −0.654857 0.654857i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.63567i 0.128909i
\(162\) 0 0
\(163\) −2.73998 + 2.73998i −0.214612 + 0.214612i −0.806223 0.591611i \(-0.798492\pi\)
0.591611 + 0.806223i \(0.298492\pi\)
\(164\) −7.94887 −0.620702
\(165\) 0 0
\(166\) 2.16088 0.167717
\(167\) −6.48477 + 6.48477i −0.501806 + 0.501806i −0.911999 0.410193i \(-0.865461\pi\)
0.410193 + 0.911999i \(0.365461\pi\)
\(168\) 0 0
\(169\) 8.85765i 0.681358i
\(170\) 0 0
\(171\) 0 0
\(172\) 4.65357 + 4.65357i 0.354831 + 0.354831i
\(173\) 1.11563 + 1.11563i 0.0848200 + 0.0848200i 0.748244 0.663424i \(-0.230897\pi\)
−0.663424 + 0.748244i \(0.730897\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.41421i 0.257356i
\(177\) 0 0
\(178\) −4.04989 + 4.04989i −0.303552 + 0.303552i
\(179\) −1.00124 −0.0748365 −0.0374183 0.999300i \(-0.511913\pi\)
−0.0374183 + 0.999300i \(0.511913\pi\)
\(180\) 0 0
\(181\) −23.0411 −1.71263 −0.856316 0.516452i \(-0.827253\pi\)
−0.856316 + 0.516452i \(0.827253\pi\)
\(182\) −1.43916 + 1.43916i −0.106677 + 0.106677i
\(183\) 0 0
\(184\) 1.63567i 0.120584i
\(185\) 0 0
\(186\) 0 0
\(187\) 5.26670 + 5.26670i 0.385140 + 0.385140i
\(188\) 1.39960 + 1.39960i 0.102076 + 0.102076i
\(189\) 0 0
\(190\) 0 0
\(191\) 3.59095i 0.259832i −0.991525 0.129916i \(-0.958529\pi\)
0.991525 0.129916i \(-0.0414707\pi\)
\(192\) 0 0
\(193\) 4.98539 4.98539i 0.358856 0.358856i −0.504535 0.863391i \(-0.668336\pi\)
0.863391 + 0.504535i \(0.168336\pi\)
\(194\) −13.6410 −0.979367
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −10.0169 + 10.0169i −0.713675 + 0.713675i −0.967302 0.253627i \(-0.918376\pi\)
0.253627 + 0.967302i \(0.418376\pi\)
\(198\) 0 0
\(199\) 27.2820i 1.93397i 0.254834 + 0.966985i \(0.417979\pi\)
−0.254834 + 0.966985i \(0.582021\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 11.8384 + 11.8384i 0.832947 + 0.832947i
\(203\) −5.68885 5.68885i −0.399279 0.399279i
\(204\) 0 0
\(205\) 0 0
\(206\) 12.2414i 0.852898i
\(207\) 0 0
\(208\) 1.43916 1.43916i 0.0997876 0.0997876i
\(209\) 6.99876 0.484114
\(210\) 0 0
\(211\) −8.70193 −0.599066 −0.299533 0.954086i \(-0.596831\pi\)
−0.299533 + 0.954086i \(0.596831\pi\)
\(212\) 2.97506 2.97506i 0.204328 0.204328i
\(213\) 0 0
\(214\) 15.4840i 1.05847i
\(215\) 0 0
\(216\) 0 0
\(217\) 4.50731 + 4.50731i 0.305976 + 0.305976i
\(218\) −3.70283 3.70283i −0.250787 0.250787i
\(219\) 0 0
\(220\) 0 0
\(221\) 4.44004i 0.298669i
\(222\) 0 0
\(223\) 2.80813 2.80813i 0.188046 0.188046i −0.606805 0.794851i \(-0.707549\pi\)
0.794851 + 0.606805i \(0.207549\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 2.25674 0.150116
\(227\) −2.88573 + 2.88573i −0.191532 + 0.191532i −0.796358 0.604826i \(-0.793243\pi\)
0.604826 + 0.796358i \(0.293243\pi\)
\(228\) 0 0
\(229\) 9.16228i 0.605461i 0.953076 + 0.302730i \(0.0978982\pi\)
−0.953076 + 0.302730i \(0.902102\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.68885 + 5.68885i 0.373491 + 0.373491i
\(233\) −4.67611 4.67611i −0.306342 0.306342i 0.537147 0.843489i \(-0.319502\pi\)
−0.843489 + 0.537147i \(0.819502\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.25725i 0.277124i
\(237\) 0 0
\(238\) −1.54258 + 1.54258i −0.0999907 + 0.0999907i
\(239\) 16.4853 1.06634 0.533172 0.846007i \(-0.321000\pi\)
0.533172 + 0.846007i \(0.321000\pi\)
\(240\) 0 0
\(241\) −8.50419 −0.547803 −0.273901 0.961758i \(-0.588314\pi\)
−0.273901 + 0.961758i \(0.588314\pi\)
\(242\) 0.464466 0.464466i 0.0298570 0.0298570i
\(243\) 0 0
\(244\) 6.88953i 0.441057i
\(245\) 0 0
\(246\) 0 0
\(247\) −2.95011 2.95011i −0.187711 0.187711i
\(248\) −4.50731 4.50731i −0.286214 0.286214i
\(249\) 0 0
\(250\) 0 0
\(251\) 18.9250i 1.19453i 0.802043 + 0.597267i \(0.203747\pi\)
−0.802043 + 0.597267i \(0.796253\pi\)
\(252\) 0 0
\(253\) −3.94887 + 3.94887i −0.248263 + 0.248263i
\(254\) −10.9189 −0.685114
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.8697 16.8697i 1.05230 1.05230i 0.0537457 0.998555i \(-0.482884\pi\)
0.998555 0.0537457i \(-0.0171160\pi\)
\(258\) 0 0
\(259\) 0.0705524i 0.00438391i
\(260\) 0 0
\(261\) 0 0
\(262\) −5.22146 5.22146i −0.322583 0.322583i
\(263\) −8.32817 8.32817i −0.513537 0.513537i 0.402071 0.915608i \(-0.368290\pi\)
−0.915608 + 0.402071i \(0.868290\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.04989i 0.125687i
\(267\) 0 0
\(268\) 5.84304 5.84304i 0.356920 0.356920i
\(269\) −16.3218 −0.995155 −0.497577 0.867420i \(-0.665777\pi\)
−0.497577 + 0.867420i \(0.665777\pi\)
\(270\) 0 0
\(271\) −27.3911 −1.66389 −0.831944 0.554859i \(-0.812772\pi\)
−0.831944 + 0.554859i \(0.812772\pi\)
\(272\) 1.54258 1.54258i 0.0935328 0.0935328i
\(273\) 0 0
\(274\) 17.2913i 1.04460i
\(275\) 0 0
\(276\) 0 0
\(277\) 0.564607 + 0.564607i 0.0339239 + 0.0339239i 0.723865 0.689941i \(-0.242364\pi\)
−0.689941 + 0.723865i \(0.742364\pi\)
\(278\) 10.7919 + 10.7919i 0.647256 + 0.647256i
\(279\) 0 0
\(280\) 0 0
\(281\) 6.14214i 0.366409i 0.983075 + 0.183205i \(0.0586471\pi\)
−0.983075 + 0.183205i \(0.941353\pi\)
\(282\) 0 0
\(283\) 10.9959 10.9959i 0.653637 0.653637i −0.300230 0.953867i \(-0.597063\pi\)
0.953867 + 0.300230i \(0.0970635\pi\)
\(284\) 2.92820 0.173757
\(285\) 0 0
\(286\) −6.94887 −0.410895
\(287\) −5.62070 + 5.62070i −0.331779 + 0.331779i
\(288\) 0 0
\(289\) 12.2409i 0.720052i
\(290\) 0 0
\(291\) 0 0
\(292\) 5.97469 + 5.97469i 0.349642 + 0.349642i
\(293\) 17.4135 + 17.4135i 1.01731 + 1.01731i 0.999848 + 0.0174591i \(0.00555767\pi\)
0.0174591 + 0.999848i \(0.494442\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.0705524i 0.00410077i
\(297\) 0 0
\(298\) −4.25397 + 4.25397i −0.246426 + 0.246426i
\(299\) 3.32905 0.192524
\(300\) 0 0
\(301\) 6.58114 0.379331
\(302\) 3.62106 3.62106i 0.208369 0.208369i
\(303\) 0 0
\(304\) 2.04989i 0.117569i
\(305\) 0 0
\(306\) 0 0
\(307\) −17.2979 17.2979i −0.987241 0.987241i 0.0126790 0.999920i \(-0.495964\pi\)
−0.999920 + 0.0126790i \(0.995964\pi\)
\(308\) 2.41421 + 2.41421i 0.137563 + 0.137563i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.3046i 0.697732i 0.937173 + 0.348866i \(0.113433\pi\)
−0.937173 + 0.348866i \(0.886567\pi\)
\(312\) 0 0
\(313\) −16.8031 + 16.8031i −0.949768 + 0.949768i −0.998797 0.0490289i \(-0.984387\pi\)
0.0490289 + 0.998797i \(0.484387\pi\)
\(314\) 12.4440 0.702253
\(315\) 0 0
\(316\) 11.6410 0.654857
\(317\) 3.16781 3.16781i 0.177922 0.177922i −0.612527 0.790449i \(-0.709847\pi\)
0.790449 + 0.612527i \(0.209847\pi\)
\(318\) 0 0
\(319\) 27.4682i 1.53792i
\(320\) 0 0
\(321\) 0 0
\(322\) −1.15660 1.15660i −0.0644546 0.0644546i
\(323\) −3.16212 3.16212i −0.175945 0.175945i
\(324\) 0 0
\(325\) 0 0
\(326\) 3.87492i 0.214612i
\(327\) 0 0
\(328\) 5.62070 5.62070i 0.310351 0.310351i
\(329\) 1.97934 0.109124
\(330\) 0 0
\(331\) −13.4986 −0.741953 −0.370976 0.928642i \(-0.620977\pi\)
−0.370976 + 0.928642i \(0.620977\pi\)
\(332\) −1.52797 + 1.52797i −0.0838583 + 0.0838583i
\(333\) 0 0
\(334\) 9.17084i 0.501806i
\(335\) 0 0
\(336\) 0 0
\(337\) 18.1303 + 18.1303i 0.987620 + 0.987620i 0.999924 0.0123043i \(-0.00391669\pi\)
−0.0123043 + 0.999924i \(0.503917\pi\)
\(338\) −6.26330 6.26330i −0.340679 0.340679i
\(339\) 0 0
\(340\) 0 0
\(341\) 21.7632i 1.17854i
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) −6.58114 −0.354831
\(345\) 0 0
\(346\) −1.57774 −0.0848200
\(347\) −18.2259 + 18.2259i −0.978417 + 0.978417i −0.999772 0.0213548i \(-0.993202\pi\)
0.0213548 + 0.999772i \(0.493202\pi\)
\(348\) 0 0
\(349\) 0.538551i 0.0288280i −0.999896 0.0144140i \(-0.995412\pi\)
0.999896 0.0144140i \(-0.00458827\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.41421 2.41421i −0.128678 0.128678i
\(353\) −16.3830 16.3830i −0.871980 0.871980i 0.120708 0.992688i \(-0.461484\pi\)
−0.992688 + 0.120708i \(0.961484\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5.72741i 0.303552i
\(357\) 0 0
\(358\) 0.707987 0.707987i 0.0374183 0.0374183i
\(359\) −31.9223 −1.68480 −0.842398 0.538856i \(-0.818857\pi\)
−0.842398 + 0.538856i \(0.818857\pi\)
\(360\) 0 0
\(361\) 14.7980 0.778840
\(362\) 16.2925 16.2925i 0.856316 0.856316i
\(363\) 0 0
\(364\) 2.03528i 0.106677i
\(365\) 0 0
\(366\) 0 0
\(367\) −24.5854 24.5854i −1.28335 1.28335i −0.938750 0.344598i \(-0.888015\pi\)
−0.344598 0.938750i \(-0.611985\pi\)
\(368\) 1.15660 + 1.15660i 0.0602918 + 0.0602918i
\(369\) 0 0
\(370\) 0 0
\(371\) 4.20736i 0.218435i
\(372\) 0 0
\(373\) 2.79796 2.79796i 0.144873 0.144873i −0.630950 0.775823i \(-0.717335\pi\)
0.775823 + 0.630950i \(0.217335\pi\)
\(374\) −7.44825 −0.385140
\(375\) 0 0
\(376\) −1.97934 −0.102076
\(377\) −11.5784 + 11.5784i −0.596317 + 0.596317i
\(378\) 0 0
\(379\) 26.4390i 1.35808i −0.734102 0.679039i \(-0.762397\pi\)
0.734102 0.679039i \(-0.237603\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.53918 + 2.53918i 0.129916 + 0.129916i
\(383\) −17.2280 17.2280i −0.880311 0.880311i 0.113255 0.993566i \(-0.463872\pi\)
−0.993566 + 0.113255i \(0.963872\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.05040i 0.358856i
\(387\) 0 0
\(388\) 9.64564 9.64564i 0.489683 0.489683i
\(389\) 32.8766 1.66691 0.833454 0.552589i \(-0.186360\pi\)
0.833454 + 0.552589i \(0.186360\pi\)
\(390\) 0 0
\(391\) 3.56829 0.180456
\(392\) −0.707107 + 0.707107i −0.0357143 + 0.0357143i
\(393\) 0 0
\(394\) 14.1660i 0.713675i
\(395\) 0 0
\(396\) 0 0
\(397\) −5.39783 5.39783i −0.270909 0.270909i 0.558557 0.829466i \(-0.311355\pi\)
−0.829466 + 0.558557i \(0.811355\pi\)
\(398\) −19.2913 19.2913i −0.966985 0.966985i
\(399\) 0 0
\(400\) 0 0
\(401\) 14.4760i 0.722897i −0.932392 0.361448i \(-0.882282\pi\)
0.932392 0.361448i \(-0.117718\pi\)
\(402\) 0 0
\(403\) 9.17361 9.17361i 0.456970 0.456970i
\(404\) −16.7420 −0.832947
\(405\) 0 0
\(406\) 8.04524 0.399279
\(407\) 0.170328 0.170328i 0.00844287 0.00844287i
\(408\) 0 0
\(409\) 16.5156i 0.816642i 0.912838 + 0.408321i \(0.133886\pi\)
−0.912838 + 0.408321i \(0.866114\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.65597 + 8.65597i 0.426449 + 0.426449i
\(413\) 3.01033 + 3.01033i 0.148129 + 0.148129i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.03528i 0.0997876i
\(417\) 0 0
\(418\) −4.94887 + 4.94887i −0.242057 + 0.242057i
\(419\) 12.0421 0.588294 0.294147 0.955760i \(-0.404964\pi\)
0.294147 + 0.955760i \(0.404964\pi\)
\(420\) 0 0
\(421\) 32.4894 1.58343 0.791717 0.610888i \(-0.209187\pi\)
0.791717 + 0.610888i \(0.209187\pi\)
\(422\) 6.15320 6.15320i 0.299533 0.299533i
\(423\) 0 0
\(424\) 4.20736i 0.204328i
\(425\) 0 0
\(426\) 0 0
\(427\) 4.87163 + 4.87163i 0.235755 + 0.235755i
\(428\) 10.9489 + 10.9489i 0.529233 + 0.529233i
\(429\) 0 0
\(430\) 0 0
\(431\) 8.50883i 0.409856i 0.978777 + 0.204928i \(0.0656960\pi\)
−0.978777 + 0.204928i \(0.934304\pi\)
\(432\) 0 0
\(433\) −3.55532 + 3.55532i −0.170858 + 0.170858i −0.787356 0.616498i \(-0.788551\pi\)
0.616498 + 0.787356i \(0.288551\pi\)
\(434\) −6.37429 −0.305976
\(435\) 0 0
\(436\) 5.23659 0.250787
\(437\) 2.37089 2.37089i 0.113415 0.113415i
\(438\) 0 0
\(439\) 13.2309i 0.631477i 0.948846 + 0.315739i \(0.102252\pi\)
−0.948846 + 0.315739i \(0.897748\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3.13958 + 3.13958i 0.149335 + 0.149335i
\(443\) −23.9223 23.9223i −1.13658 1.13658i −0.989058 0.147525i \(-0.952869\pi\)
−0.147525 0.989058i \(-0.547131\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.97129i 0.188046i
\(447\) 0 0
\(448\) 0.707107 0.707107i 0.0334077 0.0334077i
\(449\) 4.09905 0.193446 0.0967230 0.995311i \(-0.469164\pi\)
0.0967230 + 0.995311i \(0.469164\pi\)
\(450\) 0 0
\(451\) −27.1391 −1.27793
\(452\) −1.59575 + 1.59575i −0.0750580 + 0.0750580i
\(453\) 0 0
\(454\) 4.08104i 0.191532i
\(455\) 0 0
\(456\) 0 0
\(457\) −23.4150 23.4150i −1.09531 1.09531i −0.994952 0.100356i \(-0.968002\pi\)
−0.100356 0.994952i \(-0.531998\pi\)
\(458\) −6.47871 6.47871i −0.302730 0.302730i
\(459\) 0 0
\(460\) 0 0
\(461\) 19.4974i 0.908085i 0.890980 + 0.454042i \(0.150019\pi\)
−0.890980 + 0.454042i \(0.849981\pi\)
\(462\) 0 0
\(463\) 9.62033 9.62033i 0.447095 0.447095i −0.447293 0.894388i \(-0.647612\pi\)
0.894388 + 0.447293i \(0.147612\pi\)
\(464\) −8.04524 −0.373491
\(465\) 0 0
\(466\) 6.61302 0.306342
\(467\) 14.8643 14.8643i 0.687839 0.687839i −0.273915 0.961754i \(-0.588319\pi\)
0.961754 + 0.273915i \(0.0883186\pi\)
\(468\) 0 0
\(469\) 8.26330i 0.381564i
\(470\) 0 0
\(471\) 0 0
\(472\) −3.01033 3.01033i −0.138562 0.138562i
\(473\) 15.8883 + 15.8883i 0.730544 + 0.730544i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.18154i 0.0999907i
\(477\) 0 0
\(478\) −11.6569 + 11.6569i −0.533172 + 0.533172i
\(479\) −11.6065 −0.530313 −0.265157 0.964205i \(-0.585424\pi\)
−0.265157 + 0.964205i \(0.585424\pi\)
\(480\) 0 0
\(481\) −0.143594 −0.00654730
\(482\) 6.01337 6.01337i 0.273901 0.273901i
\(483\) 0 0
\(484\) 0.656854i 0.0298570i
\(485\) 0 0
\(486\) 0 0
\(487\) −26.5745 26.5745i −1.20421 1.20421i −0.972875 0.231332i \(-0.925692\pi\)
−0.231332 0.972875i \(-0.574308\pi\)
\(488\) −4.87163 4.87163i −0.220528 0.220528i
\(489\) 0 0
\(490\) 0 0
\(491\) 33.5029i 1.51197i 0.654591 + 0.755983i \(0.272841\pi\)
−0.654591 + 0.755983i \(0.727159\pi\)
\(492\) 0 0
\(493\) −12.4104 + 12.4104i −0.558939 + 0.558939i
\(494\) 4.17209 0.187711
\(495\) 0 0
\(496\) 6.37429 0.286214
\(497\) 2.07055 2.07055i 0.0928770 0.0928770i
\(498\) 0 0
\(499\) 6.58504i 0.294787i 0.989078 + 0.147393i \(0.0470883\pi\)
−0.989078 + 0.147393i \(0.952912\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −13.3820 13.3820i −0.597267 0.597267i
\(503\) 26.4682 + 26.4682i 1.18016 + 1.18016i 0.979703 + 0.200455i \(0.0642420\pi\)
0.200455 + 0.979703i \(0.435758\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5.58454i 0.248263i
\(507\) 0 0
\(508\) 7.72084 7.72084i 0.342557 0.342557i
\(509\) 11.6050 0.514381 0.257191 0.966361i \(-0.417203\pi\)
0.257191 + 0.966361i \(0.417203\pi\)
\(510\) 0 0
\(511\) 8.44949 0.373783
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 23.8573i 1.05230i
\(515\) 0 0
\(516\) 0 0
\(517\) 4.77854 + 4.77854i 0.210160 + 0.210160i
\(518\) 0.0498881 + 0.0498881i 0.00219196 + 0.00219196i
\(519\) 0 0
\(520\) 0 0
\(521\) 27.9474i 1.22440i −0.790704 0.612199i \(-0.790285\pi\)
0.790704 0.612199i \(-0.209715\pi\)
\(522\) 0 0
\(523\) 21.4247 21.4247i 0.936837 0.936837i −0.0612838 0.998120i \(-0.519519\pi\)
0.998120 + 0.0612838i \(0.0195195\pi\)
\(524\) 7.38426 0.322583
\(525\) 0 0
\(526\) 11.7778 0.513537
\(527\) 9.83287 9.83287i 0.428327 0.428327i
\(528\) 0 0
\(529\) 20.3246i 0.883677i
\(530\) 0 0
\(531\) 0 0
\(532\) −1.44949 1.44949i −0.0628434 0.0628434i
\(533\) 11.4397 + 11.4397i 0.495507 + 0.495507i
\(534\) 0 0
\(535\) 0 0
\(536\) 8.26330i 0.356920i
\(537\) 0 0
\(538\) 11.5412 11.5412i 0.497577 0.497577i
\(539\) 3.41421 0.147061
\(540\) 0 0
\(541\) 32.4705 1.39601 0.698007 0.716091i \(-0.254070\pi\)
0.698007 + 0.716091i \(0.254070\pi\)
\(542\) 19.3684 19.3684i 0.831944 0.831944i
\(543\) 0 0
\(544\) 2.18154i 0.0935328i
\(545\) 0 0
\(546\) 0 0
\(547\) 6.60441 + 6.60441i 0.282384 + 0.282384i 0.834059 0.551675i \(-0.186011\pi\)
−0.551675 + 0.834059i \(0.686011\pi\)
\(548\) 12.2268 + 12.2268i 0.522302 + 0.522302i
\(549\) 0 0
\(550\) 0 0
\(551\) 16.4918i 0.702576i
\(552\) 0 0
\(553\) 8.23143 8.23143i 0.350036 0.350036i
\(554\) −0.798474 −0.0339239
\(555\) 0 0
\(556\) −15.2621 −0.647256
\(557\) −25.2207 + 25.2207i −1.06864 + 1.06864i −0.0711727 + 0.997464i \(0.522674\pi\)
−0.997464 + 0.0711727i \(0.977326\pi\)
\(558\) 0 0
\(559\) 13.3944i 0.566525i
\(560\) 0 0
\(561\) 0 0
\(562\) −4.34315 4.34315i −0.183205 0.183205i
\(563\) −0.0225400 0.0225400i −0.000949948 0.000949948i 0.706632 0.707582i \(-0.250214\pi\)
−0.707582 + 0.706632i \(0.750214\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 15.5505i 0.653637i
\(567\) 0 0
\(568\) −2.07055 + 2.07055i −0.0868784 + 0.0868784i
\(569\) 16.4767 0.690740 0.345370 0.938467i \(-0.387753\pi\)
0.345370 + 0.938467i \(0.387753\pi\)
\(570\) 0 0
\(571\) 28.9560 1.21177 0.605884 0.795553i \(-0.292819\pi\)
0.605884 + 0.795553i \(0.292819\pi\)
\(572\) 4.91359 4.91359i 0.205448 0.205448i
\(573\) 0 0
\(574\) 7.94887i 0.331779i
\(575\) 0 0
\(576\) 0 0
\(577\) −30.3424 30.3424i −1.26317 1.26317i −0.949547 0.313624i \(-0.898457\pi\)
−0.313624 0.949547i \(-0.601543\pi\)
\(578\) −8.65561 8.65561i −0.360026 0.360026i
\(579\) 0 0
\(580\) 0 0
\(581\) 2.16088i 0.0896483i
\(582\) 0 0
\(583\) 10.1575 10.1575i 0.420680 0.420680i
\(584\) −8.44949 −0.349642
\(585\) 0 0
\(586\) −24.6264 −1.01731
\(587\) −5.98778 + 5.98778i −0.247142 + 0.247142i −0.819797 0.572655i \(-0.805914\pi\)
0.572655 + 0.819797i \(0.305914\pi\)
\(588\) 0 0
\(589\) 13.0666i 0.538399i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.0498881 0.0498881i −0.00205039 0.00205039i
\(593\) 33.1306 + 33.1306i 1.36051 + 1.36051i 0.873266 + 0.487243i \(0.161997\pi\)
0.487243 + 0.873266i \(0.338003\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.01602i 0.246426i
\(597\) 0 0
\(598\) −2.35399 + 2.35399i −0.0962619 + 0.0962619i
\(599\) 0.303973 0.0124200 0.00620999 0.999981i \(-0.498023\pi\)
0.00620999 + 0.999981i \(0.498023\pi\)
\(600\) 0 0
\(601\) 17.2813 0.704918 0.352459 0.935827i \(-0.385346\pi\)
0.352459 + 0.935827i \(0.385346\pi\)
\(602\) −4.65357 + 4.65357i −0.189665 + 0.189665i
\(603\) 0 0
\(604\) 5.12096i 0.208369i
\(605\) 0 0
\(606\) 0 0
\(607\) 16.4243 + 16.4243i 0.666644 + 0.666644i 0.956938 0.290294i \(-0.0937531\pi\)
−0.290294 + 0.956938i \(0.593753\pi\)
\(608\) 1.44949 + 1.44949i 0.0587846 + 0.0587846i
\(609\) 0 0
\(610\) 0 0
\(611\) 4.02849i 0.162975i
\(612\) 0 0
\(613\) −14.6330 + 14.6330i −0.591019 + 0.591019i −0.937907 0.346887i \(-0.887239\pi\)
0.346887 + 0.937907i \(0.387239\pi\)
\(614\) 24.4629 0.987241
\(615\) 0 0
\(616\) −3.41421 −0.137563
\(617\) 32.8831 32.8831i 1.32382 1.32382i 0.413171 0.910653i \(-0.364421\pi\)
0.910653 0.413171i \(-0.135579\pi\)
\(618\) 0 0
\(619\) 28.1001i 1.12944i 0.825283 + 0.564719i \(0.191016\pi\)
−0.825283 + 0.564719i \(0.808984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −8.70069 8.70069i −0.348866 0.348866i
\(623\) −4.04989 4.04989i −0.162255 0.162255i
\(624\) 0 0
\(625\) 0 0
\(626\) 23.7632i 0.949768i
\(627\) 0 0
\(628\) −8.79920 + 8.79920i −0.351126 + 0.351126i
\(629\) −0.153913 −0.00613691
\(630\) 0 0
\(631\) −16.9867 −0.676228 −0.338114 0.941105i \(-0.609789\pi\)
−0.338114 + 0.941105i \(0.609789\pi\)
\(632\) −8.23143 + 8.23143i −0.327429 + 0.327429i
\(633\) 0 0
\(634\) 4.47996i 0.177922i
\(635\) 0 0
\(636\) 0 0
\(637\) −1.43916 1.43916i −0.0570215 0.0570215i
\(638\) 19.4229 + 19.4229i 0.768961 + 0.768961i
\(639\) 0 0
\(640\) 0 0
\(641\) 12.1607i 0.480319i 0.970733 + 0.240160i \(0.0771998\pi\)
−0.970733 + 0.240160i \(0.922800\pi\)
\(642\) 0 0
\(643\) 2.93285 2.93285i 0.115660 0.115660i −0.646908 0.762568i \(-0.723938\pi\)
0.762568 + 0.646908i \(0.223938\pi\)
\(644\) 1.63567 0.0644546
\(645\) 0 0
\(646\) 4.47191 0.175945
\(647\) 29.4705 29.4705i 1.15860 1.15860i 0.173827 0.984776i \(-0.444387\pi\)
0.984776 0.173827i \(-0.0556133\pi\)
\(648\) 0 0
\(649\) 14.5352i 0.570555i
\(650\) 0 0
\(651\) 0 0
\(652\) 2.73998 + 2.73998i 0.107306 + 0.107306i
\(653\) −7.46337 7.46337i −0.292064 0.292064i 0.545831 0.837895i \(-0.316214\pi\)
−0.837895 + 0.545831i \(0.816214\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7.94887i 0.310351i
\(657\) 0 0
\(658\) −1.39960 + 1.39960i −0.0545622 + 0.0545622i
\(659\) 24.7639 0.964666 0.482333 0.875988i \(-0.339789\pi\)
0.482333 + 0.875988i \(0.339789\pi\)
\(660\) 0 0
\(661\) 10.3827 0.403840 0.201920 0.979402i \(-0.435282\pi\)
0.201920 + 0.979402i \(0.435282\pi\)
\(662\) 9.54499 9.54499i 0.370976 0.370976i
\(663\) 0 0
\(664\) 2.16088i 0.0838583i
\(665\) 0 0
\(666\) 0 0
\(667\) −9.30510 9.30510i −0.360295 0.360295i
\(668\) 6.48477 + 6.48477i 0.250903 + 0.250903i
\(669\) 0 0
\(670\) 0 0
\(671\) 23.5223i 0.908069i
\(672\) 0 0
\(673\) 11.8380 11.8380i 0.456321 0.456321i −0.441125 0.897446i \(-0.645420\pi\)
0.897446 + 0.441125i \(0.145420\pi\)
\(674\) −25.6401 −0.987620
\(675\) 0 0
\(676\) 8.85765 0.340679
\(677\) 12.7408 12.7408i 0.489668 0.489668i −0.418534 0.908201i \(-0.637456\pi\)
0.908201 + 0.418534i \(0.137456\pi\)
\(678\) 0 0
\(679\) 13.6410i 0.523493i
\(680\) 0 0
\(681\) 0 0
\(682\) −15.3889 15.3889i −0.589272 0.589272i
\(683\) 5.61177 + 5.61177i 0.214729 + 0.214729i 0.806273 0.591544i \(-0.201481\pi\)
−0.591544 + 0.806273i \(0.701481\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000i 0.0381802i
\(687\) 0 0
\(688\) 4.65357 4.65357i 0.177416 0.177416i
\(689\) −8.56315 −0.326230
\(690\) 0 0
\(691\) 31.6347 1.20344 0.601721 0.798706i \(-0.294482\pi\)
0.601721 + 0.798706i \(0.294482\pi\)
\(692\) 1.11563 1.11563i 0.0424100 0.0424100i
\(693\) 0 0
\(694\) 25.7753i 0.978417i
\(695\) 0 0
\(696\) 0 0
\(697\) 12.2618 + 12.2618i 0.464448 + 0.464448i
\(698\) 0.380813 + 0.380813i 0.0144140 + 0.0144140i
\(699\) 0 0
\(700\) 0 0
\(701\) 32.7205i 1.23583i 0.786243 + 0.617917i \(0.212023\pi\)
−0.786243 + 0.617917i \(0.787977\pi\)
\(702\) 0 0
\(703\) −0.102265 + 0.102265i −0.00385699 + 0.00385699i
\(704\) 3.41421 0.128678
\(705\) 0 0
\(706\) 23.1691 0.871980
\(707\) −11.8384 + 11.8384i −0.445229 + 0.445229i
\(708\) 0 0
\(709\) 47.0878i 1.76842i 0.467091 + 0.884209i \(0.345302\pi\)
−0.467091 + 0.884209i \(0.654698\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.04989 + 4.04989i 0.151776 + 0.151776i
\(713\) 7.37249 + 7.37249i 0.276102 + 0.276102i
\(714\) 0 0
\(715\) 0 0
\(716\) 1.00124i 0.0374183i
\(717\) 0 0
\(718\) 22.5725 22.5725i 0.842398 0.842398i
\(719\) −13.9350 −0.519687 −0.259844 0.965651i \(-0.583671\pi\)
−0.259844 + 0.965651i \(0.583671\pi\)
\(720\) 0 0
\(721\) 12.2414 0.455893
\(722\) −10.4637 + 10.4637i −0.389420 + 0.389420i
\(723\) 0 0
\(724\) 23.0411i 0.856316i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.199188 0.199188i −0.00738746 0.00738746i 0.703403 0.710791i \(-0.251663\pi\)
−0.710791 + 0.703403i \(0.751663\pi\)
\(728\) 1.43916 + 1.43916i 0.0533387 + 0.0533387i
\(729\) 0 0
\(730\) 0 0
\(731\) 14.3570i 0.531014i
\(732\) 0 0
\(733\) 10.2245 10.2245i 0.377650 0.377650i −0.492603 0.870254i \(-0.663955\pi\)
0.870254 + 0.492603i \(0.163955\pi\)
\(734\) 34.7690 1.28335
\(735\) 0 0
\(736\) −1.63567 −0.0602918
\(737\) 19.9494 19.9494i 0.734845 0.734845i
\(738\) 0 0
\(739\) 35.1993i 1.29483i −0.762139 0.647414i \(-0.775851\pi\)
0.762139 0.647414i \(-0.224149\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2.97506 + 2.97506i 0.109218 + 0.109218i
\(743\) −12.2052 12.2052i −0.447767 0.447767i 0.446845 0.894612i \(-0.352548\pi\)
−0.894612 + 0.446845i \(0.852548\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 3.95691i 0.144873i
\(747\) 0 0
\(748\) 5.26670 5.26670i 0.192570 0.192570i
\(749\) 15.4840 0.565774
\(750\) 0 0
\(751\) −3.73294 −0.136217 −0.0681085 0.997678i \(-0.521696\pi\)
−0.0681085 + 0.997678i \(0.521696\pi\)
\(752\) 1.39960 1.39960i 0.0510382 0.0510382i
\(753\) 0 0
\(754\) 16.3743i 0.596317i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.363597 0.363597i −0.0132151 0.0132151i 0.700468 0.713683i \(-0.252974\pi\)
−0.713683 + 0.700468i \(0.752974\pi\)
\(758\) 18.6952 + 18.6952i 0.679039 + 0.679039i
\(759\) 0 0
\(760\) 0 0
\(761\) 26.1799i 0.949022i −0.880250 0.474511i \(-0.842625\pi\)
0.880250 0.474511i \(-0.157375\pi\)
\(762\) 0 0
\(763\) 3.70283 3.70283i 0.134051 0.134051i
\(764\) −3.59095 −0.129916
\(765\) 0 0
\(766\) 24.3641 0.880311
\(767\) 6.12686 6.12686i 0.221228 0.221228i
\(768\) 0 0
\(769\) 28.9756i 1.04489i −0.852674 0.522443i \(-0.825021\pi\)
0.852674 0.522443i \(-0.174979\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.98539 4.98539i −0.179428 0.179428i
\(773\) 27.3745 + 27.3745i 0.984591 + 0.984591i 0.999883 0.0152923i \(-0.00486787\pi\)
−0.0152923 + 0.999883i \(0.504868\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 13.6410i 0.489683i
\(777\) 0 0
\(778\) −23.2472 + 23.2472i −0.833454 + 0.833454i
\(779\) 16.2943 0.583803
\(780\) 0 0
\(781\) 9.99751 0.357739
\(782\) −2.52316 + 2.52316i −0.0902281 + 0.0902281i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) 0 0
\(786\) 0 0
\(787\) −26.8559 26.8559i −0.957309 0.957309i 0.0418162 0.999125i \(-0.486686\pi\)
−0.999125 + 0.0418162i \(0.986686\pi\)
\(788\) 10.0169 + 10.0169i 0.356837 + 0.356837i
\(789\) 0 0
\(790\) 0 0
\(791\) 2.25674i 0.0802403i
\(792\) 0 0
\(793\) 9.91512 9.91512i 0.352096 0.352096i
\(794\) 7.63368 0.270909
\(795\) 0 0
\(796\) 27.2820 0.966985
\(797\) −5.58506 + 5.58506i −0.197833 + 0.197833i −0.799070 0.601237i \(-0.794675\pi\)
0.601237 + 0.799070i \(0.294675\pi\)
\(798\) 0 0