Properties

Label 3150.2.m.c
Level $3150$
Weight $2$
Character orbit 3150.m
Analytic conductor $25.153$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3150,2,Mod(1457,3150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3150, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3150.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} + \zeta_{8} q^{7} + \zeta_{8} q^{8} + (2 \zeta_{8}^{3} + 2 \zeta_{8}^{2} + 2 \zeta_{8}) q^{11} + (2 \zeta_{8}^{3} + 2 \zeta_{8}^{2} - 2) q^{13} - q^{14} - q^{16} + \cdots - \zeta_{8} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{13} - 4 q^{14} - 4 q^{16} - 12 q^{17} - 8 q^{22} - 8 q^{23} + 24 q^{29} - 24 q^{31} + 4 q^{37} + 20 q^{38} + 20 q^{43} + 8 q^{44} + 16 q^{46} - 20 q^{47} + 8 q^{52} + 8 q^{53} + 8 q^{58} + 32 q^{59}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(\zeta_{8}^{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1457.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 + 0.707107i 0 1.00000i 0 0 0.707107 + 0.707107i 0.707107 + 0.707107i 0 0
1457.2 0.707107 0.707107i 0 1.00000i 0 0 −0.707107 0.707107i −0.707107 0.707107i 0 0
2843.1 −0.707107 0.707107i 0 1.00000i 0 0 0.707107 0.707107i 0.707107 0.707107i 0 0
2843.2 0.707107 + 0.707107i 0 1.00000i 0 0 −0.707107 + 0.707107i −0.707107 + 0.707107i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.m.c 4
3.b odd 2 1 3150.2.m.d yes 4
5.b even 2 1 3150.2.m.e yes 4
5.c odd 4 1 3150.2.m.d yes 4
5.c odd 4 1 3150.2.m.f yes 4
15.d odd 2 1 3150.2.m.f yes 4
15.e even 4 1 inner 3150.2.m.c 4
15.e even 4 1 3150.2.m.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3150.2.m.c 4 1.a even 1 1 trivial
3150.2.m.c 4 15.e even 4 1 inner
3150.2.m.d yes 4 3.b odd 2 1
3150.2.m.d yes 4 5.c odd 4 1
3150.2.m.e yes 4 5.b even 2 1
3150.2.m.e yes 4 15.e even 4 1
3150.2.m.f yes 4 5.c odd 4 1
3150.2.m.f yes 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):

\( T_{11}^{4} + 24T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{4} + 8T_{13}^{3} + 32T_{13}^{2} + 32T_{13} + 16 \) Copy content Toggle raw display
\( T_{17}^{4} + 12T_{17}^{3} + 72T_{17}^{2} + 168T_{17} + 196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$19$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( (T^{2} - 12 T + 28)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12 T + 28)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 9604 \) Copy content Toggle raw display
$41$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$43$ \( T^{4} - 20 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$47$ \( T^{4} + 20 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$53$ \( T^{4} - 8 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$59$ \( (T - 8)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 16 T + 62)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$71$ \( T^{4} + 164T^{2} + 2116 \) Copy content Toggle raw display
$73$ \( (T^{2} + 12 T + 72)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$83$ \( T^{4} - 16 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 124)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots + 16 \) Copy content Toggle raw display
show more
show less