# Properties

 Label 3150.2.g.r.2899.1 Level $3150$ Weight $2$ Character 3150.2899 Analytic conductor $25.153$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3150.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$25.1528766367$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 42) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 2899.1 Root $$1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 3150.2899 Dual form 3150.2.g.r.2899.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000i q^{2} -1.00000 q^{4} -1.00000i q^{7} +1.00000i q^{8} +O(q^{10})$$ $$q-1.00000i q^{2} -1.00000 q^{4} -1.00000i q^{7} +1.00000i q^{8} +4.00000 q^{11} -6.00000i q^{13} -1.00000 q^{14} +1.00000 q^{16} -2.00000i q^{17} +4.00000 q^{19} -4.00000i q^{22} +8.00000i q^{23} -6.00000 q^{26} +1.00000i q^{28} -2.00000 q^{29} -1.00000i q^{32} -2.00000 q^{34} -10.0000i q^{37} -4.00000i q^{38} +6.00000 q^{41} +4.00000i q^{43} -4.00000 q^{44} +8.00000 q^{46} -1.00000 q^{49} +6.00000i q^{52} +6.00000i q^{53} +1.00000 q^{56} +2.00000i q^{58} +4.00000 q^{59} +6.00000 q^{61} -1.00000 q^{64} +4.00000i q^{67} +2.00000i q^{68} -8.00000 q^{71} -10.0000i q^{73} -10.0000 q^{74} -4.00000 q^{76} -4.00000i q^{77} -6.00000i q^{82} -4.00000i q^{83} +4.00000 q^{86} +4.00000i q^{88} -6.00000 q^{89} -6.00000 q^{91} -8.00000i q^{92} -14.0000i q^{97} +1.00000i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + O(q^{10})$$ $$2q - 2q^{4} + 8q^{11} - 2q^{14} + 2q^{16} + 8q^{19} - 12q^{26} - 4q^{29} - 4q^{34} + 12q^{41} - 8q^{44} + 16q^{46} - 2q^{49} + 2q^{56} + 8q^{59} + 12q^{61} - 2q^{64} - 16q^{71} - 20q^{74} - 8q^{76} + 8q^{86} - 12q^{89} - 12q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$2801$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ − 1.00000i − 0.707107i
$$3$$ 0 0
$$4$$ −1.00000 −0.500000
$$5$$ 0 0
$$6$$ 0 0
$$7$$ − 1.00000i − 0.377964i
$$8$$ 1.00000i 0.353553i
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 4.00000 1.20605 0.603023 0.797724i $$-0.293963\pi$$
0.603023 + 0.797724i $$0.293963\pi$$
$$12$$ 0 0
$$13$$ − 6.00000i − 1.66410i −0.554700 0.832050i $$-0.687167\pi$$
0.554700 0.832050i $$-0.312833\pi$$
$$14$$ −1.00000 −0.267261
$$15$$ 0 0
$$16$$ 1.00000 0.250000
$$17$$ − 2.00000i − 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ − 4.00000i − 0.852803i
$$23$$ 8.00000i 1.66812i 0.551677 + 0.834058i $$0.313988\pi$$
−0.551677 + 0.834058i $$0.686012\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ −6.00000 −1.17670
$$27$$ 0 0
$$28$$ 1.00000i 0.188982i
$$29$$ −2.00000 −0.371391 −0.185695 0.982607i $$-0.559454\pi$$
−0.185695 + 0.982607i $$0.559454\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ − 1.00000i − 0.176777i
$$33$$ 0 0
$$34$$ −2.00000 −0.342997
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 10.0000i − 1.64399i −0.569495 0.821995i $$-0.692861\pi$$
0.569495 0.821995i $$-0.307139\pi$$
$$38$$ − 4.00000i − 0.648886i
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ 4.00000i 0.609994i 0.952353 + 0.304997i $$0.0986555\pi$$
−0.952353 + 0.304997i $$0.901344\pi$$
$$44$$ −4.00000 −0.603023
$$45$$ 0 0
$$46$$ 8.00000 1.17954
$$47$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$48$$ 0 0
$$49$$ −1.00000 −0.142857
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 6.00000i 0.832050i
$$53$$ 6.00000i 0.824163i 0.911147 + 0.412082i $$0.135198\pi$$
−0.911147 + 0.412082i $$0.864802\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 1.00000 0.133631
$$57$$ 0 0
$$58$$ 2.00000i 0.262613i
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ 6.00000 0.768221 0.384111 0.923287i $$-0.374508\pi$$
0.384111 + 0.923287i $$0.374508\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ −1.00000 −0.125000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 4.00000i 0.488678i 0.969690 + 0.244339i $$0.0785709\pi$$
−0.969690 + 0.244339i $$0.921429\pi$$
$$68$$ 2.00000i 0.242536i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −8.00000 −0.949425 −0.474713 0.880141i $$-0.657448\pi$$
−0.474713 + 0.880141i $$0.657448\pi$$
$$72$$ 0 0
$$73$$ − 10.0000i − 1.17041i −0.810885 0.585206i $$-0.801014\pi$$
0.810885 0.585206i $$-0.198986\pi$$
$$74$$ −10.0000 −1.16248
$$75$$ 0 0
$$76$$ −4.00000 −0.458831
$$77$$ − 4.00000i − 0.455842i
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ − 6.00000i − 0.662589i
$$83$$ − 4.00000i − 0.439057i −0.975606 0.219529i $$-0.929548\pi$$
0.975606 0.219529i $$-0.0704519\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 4.00000 0.431331
$$87$$ 0 0
$$88$$ 4.00000i 0.426401i
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ −6.00000 −0.628971
$$92$$ − 8.00000i − 0.834058i
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ − 14.0000i − 1.42148i −0.703452 0.710742i $$-0.748359\pi$$
0.703452 0.710742i $$-0.251641\pi$$
$$98$$ 1.00000i 0.101015i
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 2.00000 0.199007 0.0995037 0.995037i $$-0.468274\pi$$
0.0995037 + 0.995037i $$0.468274\pi$$
$$102$$ 0 0
$$103$$ − 8.00000i − 0.788263i −0.919054 0.394132i $$-0.871045\pi$$
0.919054 0.394132i $$-0.128955\pi$$
$$104$$ 6.00000 0.588348
$$105$$ 0 0
$$106$$ 6.00000 0.582772
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ − 1.00000i − 0.0944911i
$$113$$ − 14.0000i − 1.31701i −0.752577 0.658505i $$-0.771189\pi$$
0.752577 0.658505i $$-0.228811\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 2.00000 0.185695
$$117$$ 0 0
$$118$$ − 4.00000i − 0.368230i
$$119$$ −2.00000 −0.183340
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ − 6.00000i − 0.543214i
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$128$$ 1.00000i 0.0883883i
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 20.0000 1.74741 0.873704 0.486458i $$-0.161711\pi$$
0.873704 + 0.486458i $$0.161711\pi$$
$$132$$ 0 0
$$133$$ − 4.00000i − 0.346844i
$$134$$ 4.00000 0.345547
$$135$$ 0 0
$$136$$ 2.00000 0.171499
$$137$$ − 10.0000i − 0.854358i −0.904167 0.427179i $$-0.859507\pi$$
0.904167 0.427179i $$-0.140493\pi$$
$$138$$ 0 0
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 8.00000i 0.671345i
$$143$$ − 24.0000i − 2.00698i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ −10.0000 −0.827606
$$147$$ 0 0
$$148$$ 10.0000i 0.821995i
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 4.00000i 0.324443i
$$153$$ 0 0
$$154$$ −4.00000 −0.322329
$$155$$ 0 0
$$156$$ 0 0
$$157$$ − 10.0000i − 0.798087i −0.916932 0.399043i $$-0.869342\pi$$
0.916932 0.399043i $$-0.130658\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 8.00000 0.630488
$$162$$ 0 0
$$163$$ − 20.0000i − 1.56652i −0.621694 0.783260i $$-0.713555\pi$$
0.621694 0.783260i $$-0.286445\pi$$
$$164$$ −6.00000 −0.468521
$$165$$ 0 0
$$166$$ −4.00000 −0.310460
$$167$$ 8.00000i 0.619059i 0.950890 + 0.309529i $$0.100171\pi$$
−0.950890 + 0.309529i $$0.899829\pi$$
$$168$$ 0 0
$$169$$ −23.0000 −1.76923
$$170$$ 0 0
$$171$$ 0 0
$$172$$ − 4.00000i − 0.304997i
$$173$$ 22.0000i 1.67263i 0.548250 + 0.836315i $$0.315294\pi$$
−0.548250 + 0.836315i $$0.684706\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 4.00000 0.301511
$$177$$ 0 0
$$178$$ 6.00000i 0.449719i
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ −18.0000 −1.33793 −0.668965 0.743294i $$-0.733262\pi$$
−0.668965 + 0.743294i $$0.733262\pi$$
$$182$$ 6.00000i 0.444750i
$$183$$ 0 0
$$184$$ −8.00000 −0.589768
$$185$$ 0 0
$$186$$ 0 0
$$187$$ − 8.00000i − 0.585018i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ − 2.00000i − 0.143963i −0.997406 0.0719816i $$-0.977068\pi$$
0.997406 0.0719816i $$-0.0229323\pi$$
$$194$$ −14.0000 −1.00514
$$195$$ 0 0
$$196$$ 1.00000 0.0714286
$$197$$ 10.0000i 0.712470i 0.934396 + 0.356235i $$0.115940\pi$$
−0.934396 + 0.356235i $$0.884060\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ − 2.00000i − 0.140720i
$$203$$ 2.00000i 0.140372i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ −8.00000 −0.557386
$$207$$ 0 0
$$208$$ − 6.00000i − 0.416025i
$$209$$ 16.0000 1.10674
$$210$$ 0 0
$$211$$ 20.0000 1.37686 0.688428 0.725304i $$-0.258301\pi$$
0.688428 + 0.725304i $$0.258301\pi$$
$$212$$ − 6.00000i − 0.412082i
$$213$$ 0 0
$$214$$ −12.0000 −0.820303
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ − 2.00000i − 0.135457i
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −12.0000 −0.807207
$$222$$ 0 0
$$223$$ 16.0000i 1.07144i 0.844396 + 0.535720i $$0.179960\pi$$
−0.844396 + 0.535720i $$0.820040\pi$$
$$224$$ −1.00000 −0.0668153
$$225$$ 0 0
$$226$$ −14.0000 −0.931266
$$227$$ − 12.0000i − 0.796468i −0.917284 0.398234i $$-0.869623\pi$$
0.917284 0.398234i $$-0.130377\pi$$
$$228$$ 0 0
$$229$$ 2.00000 0.132164 0.0660819 0.997814i $$-0.478950\pi$$
0.0660819 + 0.997814i $$0.478950\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ − 2.00000i − 0.131306i
$$233$$ − 22.0000i − 1.44127i −0.693316 0.720634i $$-0.743851\pi$$
0.693316 0.720634i $$-0.256149\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ −4.00000 −0.260378
$$237$$ 0 0
$$238$$ 2.00000i 0.129641i
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ 2.00000 0.128831 0.0644157 0.997923i $$-0.479482\pi$$
0.0644157 + 0.997923i $$0.479482\pi$$
$$242$$ − 5.00000i − 0.321412i
$$243$$ 0 0
$$244$$ −6.00000 −0.384111
$$245$$ 0 0
$$246$$ 0 0
$$247$$ − 24.0000i − 1.52708i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 12.0000 0.757433 0.378717 0.925513i $$-0.376365\pi$$
0.378717 + 0.925513i $$0.376365\pi$$
$$252$$ 0 0
$$253$$ 32.0000i 2.01182i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ 30.0000i 1.87135i 0.352865 + 0.935674i $$0.385208\pi$$
−0.352865 + 0.935674i $$0.614792\pi$$
$$258$$ 0 0
$$259$$ −10.0000 −0.621370
$$260$$ 0 0
$$261$$ 0 0
$$262$$ − 20.0000i − 1.23560i
$$263$$ − 24.0000i − 1.47990i −0.672660 0.739952i $$-0.734848\pi$$
0.672660 0.739952i $$-0.265152\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ −4.00000 −0.245256
$$267$$ 0 0
$$268$$ − 4.00000i − 0.244339i
$$269$$ 22.0000 1.34136 0.670682 0.741745i $$-0.266002\pi$$
0.670682 + 0.741745i $$0.266002\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ − 2.00000i − 0.121268i
$$273$$ 0 0
$$274$$ −10.0000 −0.604122
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 10.0000i − 0.600842i −0.953807 0.300421i $$-0.902873\pi$$
0.953807 0.300421i $$-0.0971271\pi$$
$$278$$ 4.00000i 0.239904i
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −26.0000 −1.55103 −0.775515 0.631329i $$-0.782510\pi$$
−0.775515 + 0.631329i $$0.782510\pi$$
$$282$$ 0 0
$$283$$ − 4.00000i − 0.237775i −0.992908 0.118888i $$-0.962067\pi$$
0.992908 0.118888i $$-0.0379328\pi$$
$$284$$ 8.00000 0.474713
$$285$$ 0 0
$$286$$ −24.0000 −1.41915
$$287$$ − 6.00000i − 0.354169i
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 10.0000i 0.585206i
$$293$$ 30.0000i 1.75262i 0.481749 + 0.876309i $$0.340002\pi$$
−0.481749 + 0.876309i $$0.659998\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 10.0000 0.581238
$$297$$ 0 0
$$298$$ − 6.00000i − 0.347571i
$$299$$ 48.0000 2.77591
$$300$$ 0 0
$$301$$ 4.00000 0.230556
$$302$$ 8.00000i 0.460348i
$$303$$ 0 0
$$304$$ 4.00000 0.229416
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 28.0000i 1.59804i 0.601302 + 0.799022i $$0.294649\pi$$
−0.601302 + 0.799022i $$0.705351\pi$$
$$308$$ 4.00000i 0.227921i
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 8.00000 0.453638 0.226819 0.973937i $$-0.427167\pi$$
0.226819 + 0.973937i $$0.427167\pi$$
$$312$$ 0 0
$$313$$ − 10.0000i − 0.565233i −0.959233 0.282617i $$-0.908798\pi$$
0.959233 0.282617i $$-0.0912024\pi$$
$$314$$ −10.0000 −0.564333
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 18.0000i 1.01098i 0.862832 + 0.505490i $$0.168688\pi$$
−0.862832 + 0.505490i $$0.831312\pi$$
$$318$$ 0 0
$$319$$ −8.00000 −0.447914
$$320$$ 0 0
$$321$$ 0 0
$$322$$ − 8.00000i − 0.445823i
$$323$$ − 8.00000i − 0.445132i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ −20.0000 −1.10770
$$327$$ 0 0
$$328$$ 6.00000i 0.331295i
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −4.00000 −0.219860 −0.109930 0.993939i $$-0.535063\pi$$
−0.109930 + 0.993939i $$0.535063\pi$$
$$332$$ 4.00000i 0.219529i
$$333$$ 0 0
$$334$$ 8.00000 0.437741
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 18.0000i 0.980522i 0.871576 + 0.490261i $$0.163099\pi$$
−0.871576 + 0.490261i $$0.836901\pi$$
$$338$$ 23.0000i 1.25104i
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 1.00000i 0.0539949i
$$344$$ −4.00000 −0.215666
$$345$$ 0 0
$$346$$ 22.0000 1.18273
$$347$$ − 12.0000i − 0.644194i −0.946707 0.322097i $$-0.895612\pi$$
0.946707 0.322097i $$-0.104388\pi$$
$$348$$ 0 0
$$349$$ −22.0000 −1.17763 −0.588817 0.808267i $$-0.700406\pi$$
−0.588817 + 0.808267i $$0.700406\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ − 4.00000i − 0.213201i
$$353$$ − 30.0000i − 1.59674i −0.602168 0.798369i $$-0.705696\pi$$
0.602168 0.798369i $$-0.294304\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 6.00000 0.317999
$$357$$ 0 0
$$358$$ 12.0000i 0.634220i
$$359$$ −8.00000 −0.422224 −0.211112 0.977462i $$-0.567708\pi$$
−0.211112 + 0.977462i $$0.567708\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 18.0000i 0.946059i
$$363$$ 0 0
$$364$$ 6.00000 0.314485
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 32.0000i 1.67039i 0.549957 + 0.835193i $$0.314644\pi$$
−0.549957 + 0.835193i $$0.685356\pi$$
$$368$$ 8.00000i 0.417029i
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 6.00000 0.311504
$$372$$ 0 0
$$373$$ − 22.0000i − 1.13912i −0.821951 0.569558i $$-0.807114\pi$$
0.821951 0.569558i $$-0.192886\pi$$
$$374$$ −8.00000 −0.413670
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 12.0000i 0.618031i
$$378$$ 0 0
$$379$$ 20.0000 1.02733 0.513665 0.857991i $$-0.328287\pi$$
0.513665 + 0.857991i $$0.328287\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ − 16.0000i − 0.817562i −0.912633 0.408781i $$-0.865954\pi$$
0.912633 0.408781i $$-0.134046\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ −2.00000 −0.101797
$$387$$ 0 0
$$388$$ 14.0000i 0.710742i
$$389$$ −26.0000 −1.31825 −0.659126 0.752032i $$-0.729074\pi$$
−0.659126 + 0.752032i $$0.729074\pi$$
$$390$$ 0 0
$$391$$ 16.0000 0.809155
$$392$$ − 1.00000i − 0.0505076i
$$393$$ 0 0
$$394$$ 10.0000 0.503793
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 6.00000i 0.301131i 0.988600 + 0.150566i $$0.0481095\pi$$
−0.988600 + 0.150566i $$0.951890\pi$$
$$398$$ 8.00000i 0.401004i
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −18.0000 −0.898877 −0.449439 0.893311i $$-0.648376\pi$$
−0.449439 + 0.893311i $$0.648376\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ −2.00000 −0.0995037
$$405$$ 0 0
$$406$$ 2.00000 0.0992583
$$407$$ − 40.0000i − 1.98273i
$$408$$ 0 0
$$409$$ 22.0000 1.08783 0.543915 0.839140i $$-0.316941\pi$$
0.543915 + 0.839140i $$0.316941\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 8.00000i 0.394132i
$$413$$ − 4.00000i − 0.196827i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ −6.00000 −0.294174
$$417$$ 0 0
$$418$$ − 16.0000i − 0.782586i
$$419$$ −36.0000 −1.75872 −0.879358 0.476162i $$-0.842028\pi$$
−0.879358 + 0.476162i $$0.842028\pi$$
$$420$$ 0 0
$$421$$ 6.00000 0.292422 0.146211 0.989253i $$-0.453292\pi$$
0.146211 + 0.989253i $$0.453292\pi$$
$$422$$ − 20.0000i − 0.973585i
$$423$$ 0 0
$$424$$ −6.00000 −0.291386
$$425$$ 0 0
$$426$$ 0 0
$$427$$ − 6.00000i − 0.290360i
$$428$$ 12.0000i 0.580042i
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 0 0
$$433$$ − 2.00000i − 0.0961139i −0.998845 0.0480569i $$-0.984697\pi$$
0.998845 0.0480569i $$-0.0153029\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ −2.00000 −0.0957826
$$437$$ 32.0000i 1.53077i
$$438$$ 0 0
$$439$$ 24.0000 1.14546 0.572729 0.819745i $$-0.305885\pi$$
0.572729 + 0.819745i $$0.305885\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 12.0000i 0.570782i
$$443$$ − 4.00000i − 0.190046i −0.995475 0.0950229i $$-0.969708\pi$$
0.995475 0.0950229i $$-0.0302924\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 16.0000 0.757622
$$447$$ 0 0
$$448$$ 1.00000i 0.0472456i
$$449$$ 34.0000 1.60456 0.802280 0.596948i $$-0.203620\pi$$
0.802280 + 0.596948i $$0.203620\pi$$
$$450$$ 0 0
$$451$$ 24.0000 1.13012
$$452$$ 14.0000i 0.658505i
$$453$$ 0 0
$$454$$ −12.0000 −0.563188
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 10.0000i 0.467780i 0.972263 + 0.233890i $$0.0751456\pi$$
−0.972263 + 0.233890i $$0.924854\pi$$
$$458$$ − 2.00000i − 0.0934539i
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −22.0000 −1.02464 −0.512321 0.858794i $$-0.671214\pi$$
−0.512321 + 0.858794i $$0.671214\pi$$
$$462$$ 0 0
$$463$$ 32.0000i 1.48717i 0.668644 + 0.743583i $$0.266875\pi$$
−0.668644 + 0.743583i $$0.733125\pi$$
$$464$$ −2.00000 −0.0928477
$$465$$ 0 0
$$466$$ −22.0000 −1.01913
$$467$$ − 28.0000i − 1.29569i −0.761774 0.647843i $$-0.775671\pi$$
0.761774 0.647843i $$-0.224329\pi$$
$$468$$ 0 0
$$469$$ 4.00000 0.184703
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 4.00000i 0.184115i
$$473$$ 16.0000i 0.735681i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 2.00000 0.0916698
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −16.0000 −0.731059 −0.365529 0.930800i $$-0.619112\pi$$
−0.365529 + 0.930800i $$0.619112\pi$$
$$480$$ 0 0
$$481$$ −60.0000 −2.73576
$$482$$ − 2.00000i − 0.0910975i
$$483$$ 0 0
$$484$$ −5.00000 −0.227273
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 8.00000i 0.362515i 0.983436 + 0.181257i $$0.0580167\pi$$
−0.983436 + 0.181257i $$0.941983\pi$$
$$488$$ 6.00000i 0.271607i
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −12.0000 −0.541552 −0.270776 0.962642i $$-0.587280\pi$$
−0.270776 + 0.962642i $$0.587280\pi$$
$$492$$ 0 0
$$493$$ 4.00000i 0.180151i
$$494$$ −24.0000 −1.07981
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 8.00000i 0.358849i
$$498$$ 0 0
$$499$$ 44.0000 1.96971 0.984855 0.173379i $$-0.0554684\pi$$
0.984855 + 0.173379i $$0.0554684\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ − 12.0000i − 0.535586i
$$503$$ 24.0000i 1.07011i 0.844818 + 0.535054i $$0.179709\pi$$
−0.844818 + 0.535054i $$0.820291\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 32.0000 1.42257
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ 0 0
$$511$$ −10.0000 −0.442374
$$512$$ − 1.00000i − 0.0441942i
$$513$$ 0 0
$$514$$ 30.0000 1.32324
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 10.0000i 0.439375i
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 6.00000 0.262865 0.131432 0.991325i $$-0.458042\pi$$
0.131432 + 0.991325i $$0.458042\pi$$
$$522$$ 0 0
$$523$$ − 20.0000i − 0.874539i −0.899331 0.437269i $$-0.855946\pi$$
0.899331 0.437269i $$-0.144054\pi$$
$$524$$ −20.0000 −0.873704
$$525$$ 0 0
$$526$$ −24.0000 −1.04645
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −41.0000 −1.78261
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 4.00000i 0.173422i
$$533$$ − 36.0000i − 1.55933i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ −4.00000 −0.172774
$$537$$ 0 0
$$538$$ − 22.0000i − 0.948487i
$$539$$ −4.00000 −0.172292
$$540$$ 0 0
$$541$$ 30.0000 1.28980 0.644900 0.764267i $$-0.276899\pi$$
0.644900 + 0.764267i $$0.276899\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ −2.00000 −0.0857493
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 12.0000i − 0.513083i −0.966533 0.256541i $$-0.917417\pi$$
0.966533 0.256541i $$-0.0825830\pi$$
$$548$$ 10.0000i 0.427179i
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −8.00000 −0.340811
$$552$$ 0 0
$$553$$ 0 0
$$554$$ −10.0000 −0.424859
$$555$$ 0 0
$$556$$ 4.00000 0.169638
$$557$$ 2.00000i 0.0847427i 0.999102 + 0.0423714i $$0.0134913\pi$$
−0.999102 + 0.0423714i $$0.986509\pi$$
$$558$$ 0 0
$$559$$ 24.0000 1.01509
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 26.0000i 1.09674i
$$563$$ 44.0000i 1.85438i 0.374593 + 0.927189i $$0.377783\pi$$
−0.374593 + 0.927189i $$0.622217\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ −4.00000 −0.168133
$$567$$ 0 0
$$568$$ − 8.00000i − 0.335673i
$$569$$ −6.00000 −0.251533 −0.125767 0.992060i $$-0.540139\pi$$
−0.125767 + 0.992060i $$0.540139\pi$$
$$570$$ 0 0
$$571$$ 12.0000 0.502184 0.251092 0.967963i $$-0.419210\pi$$
0.251092 + 0.967963i $$0.419210\pi$$
$$572$$ 24.0000i 1.00349i
$$573$$ 0 0
$$574$$ −6.00000 −0.250435
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 34.0000i 1.41544i 0.706494 + 0.707719i $$0.250276\pi$$
−0.706494 + 0.707719i $$0.749724\pi$$
$$578$$ − 13.0000i − 0.540729i
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −4.00000 −0.165948
$$582$$ 0 0
$$583$$ 24.0000i 0.993978i
$$584$$ 10.0000 0.413803
$$585$$ 0 0
$$586$$ 30.0000 1.23929
$$587$$ 28.0000i 1.15568i 0.816149 + 0.577842i $$0.196105\pi$$
−0.816149 + 0.577842i $$0.803895\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ − 10.0000i − 0.410997i
$$593$$ 18.0000i 0.739171i 0.929197 + 0.369586i $$0.120500\pi$$
−0.929197 + 0.369586i $$0.879500\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −6.00000 −0.245770
$$597$$ 0 0
$$598$$ − 48.0000i − 1.96287i
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ 26.0000 1.06056 0.530281 0.847822i $$-0.322086\pi$$
0.530281 + 0.847822i $$0.322086\pi$$
$$602$$ − 4.00000i − 0.163028i
$$603$$ 0 0
$$604$$ 8.00000 0.325515
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 48.0000i 1.94826i 0.225989 + 0.974130i $$0.427439\pi$$
−0.225989 + 0.974130i $$0.572561\pi$$
$$608$$ − 4.00000i − 0.162221i
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 42.0000i 1.69636i 0.529705 + 0.848182i $$0.322303\pi$$
−0.529705 + 0.848182i $$0.677697\pi$$
$$614$$ 28.0000 1.12999
$$615$$ 0 0
$$616$$ 4.00000 0.161165
$$617$$ 22.0000i 0.885687i 0.896599 + 0.442843i $$0.146030\pi$$
−0.896599 + 0.442843i $$0.853970\pi$$
$$618$$ 0 0
$$619$$ 44.0000 1.76851 0.884255 0.467005i $$-0.154667\pi$$
0.884255 + 0.467005i $$0.154667\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ − 8.00000i − 0.320771i
$$623$$ 6.00000i 0.240385i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ −10.0000 −0.399680
$$627$$ 0 0
$$628$$ 10.0000i 0.399043i
$$629$$ −20.0000 −0.797452
$$630$$ 0 0
$$631$$ 8.00000 0.318475 0.159237 0.987240i $$-0.449096\pi$$
0.159237 + 0.987240i $$0.449096\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 18.0000 0.714871
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 6.00000i 0.237729i
$$638$$ 8.00000i 0.316723i
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −2.00000 −0.0789953 −0.0394976 0.999220i $$-0.512576\pi$$
−0.0394976 + 0.999220i $$0.512576\pi$$
$$642$$ 0 0
$$643$$ 4.00000i 0.157745i 0.996885 + 0.0788723i $$0.0251319\pi$$
−0.996885 + 0.0788723i $$0.974868\pi$$
$$644$$ −8.00000 −0.315244
$$645$$ 0 0
$$646$$ −8.00000 −0.314756
$$647$$ − 24.0000i − 0.943537i −0.881722 0.471769i $$-0.843616\pi$$
0.881722 0.471769i $$-0.156384\pi$$
$$648$$ 0 0
$$649$$ 16.0000 0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 20.0000i 0.783260i
$$653$$ − 18.0000i − 0.704394i −0.935926 0.352197i $$-0.885435\pi$$
0.935926 0.352197i $$-0.114565\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 6.00000 0.234261
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −28.0000 −1.09073 −0.545363 0.838200i $$-0.683608\pi$$
−0.545363 + 0.838200i $$0.683608\pi$$
$$660$$ 0 0
$$661$$ −2.00000 −0.0777910 −0.0388955 0.999243i $$-0.512384\pi$$
−0.0388955 + 0.999243i $$0.512384\pi$$
$$662$$ 4.00000i 0.155464i
$$663$$ 0 0
$$664$$ 4.00000 0.155230
$$665$$ 0 0
$$666$$ 0 0
$$667$$ − 16.0000i − 0.619522i
$$668$$ − 8.00000i − 0.309529i
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 24.0000 0.926510
$$672$$ 0 0
$$673$$ − 2.00000i − 0.0770943i −0.999257 0.0385472i $$-0.987727\pi$$
0.999257 0.0385472i $$-0.0122730\pi$$
$$674$$ 18.0000 0.693334
$$675$$ 0 0
$$676$$ 23.0000 0.884615
$$677$$ 18.0000i 0.691796i 0.938272 + 0.345898i $$0.112426\pi$$
−0.938272 + 0.345898i $$0.887574\pi$$
$$678$$ 0 0
$$679$$ −14.0000 −0.537271
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 12.0000i 0.459167i 0.973289 + 0.229584i $$0.0737364\pi$$
−0.973289 + 0.229584i $$0.926264\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 1.00000 0.0381802
$$687$$ 0 0
$$688$$ 4.00000i 0.152499i
$$689$$ 36.0000 1.37149
$$690$$ 0 0
$$691$$ −4.00000 −0.152167 −0.0760836 0.997101i $$-0.524242\pi$$
−0.0760836 + 0.997101i $$0.524242\pi$$
$$692$$ − 22.0000i − 0.836315i
$$693$$ 0 0
$$694$$ −12.0000 −0.455514
$$695$$ 0 0
$$696$$ 0 0
$$697$$ − 12.0000i − 0.454532i
$$698$$ 22.0000i 0.832712i
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 2.00000 0.0755390 0.0377695 0.999286i $$-0.487975\pi$$
0.0377695 + 0.999286i $$0.487975\pi$$
$$702$$ 0 0
$$703$$ − 40.0000i − 1.50863i
$$704$$ −4.00000 −0.150756
$$705$$ 0 0
$$706$$ −30.0000 −1.12906
$$707$$ − 2.00000i − 0.0752177i
$$708$$ 0 0
$$709$$ 10.0000 0.375558 0.187779 0.982211i $$-0.439871\pi$$
0.187779 + 0.982211i $$0.439871\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ − 6.00000i − 0.224860i
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 12.0000 0.448461
$$717$$ 0 0
$$718$$ 8.00000i 0.298557i
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ −8.00000 −0.297936
$$722$$ 3.00000i 0.111648i
$$723$$ 0 0
$$724$$ 18.0000 0.668965
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 8.00000i − 0.296704i −0.988935 0.148352i $$-0.952603\pi$$
0.988935 0.148352i $$-0.0473968\pi$$
$$728$$ − 6.00000i − 0.222375i
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 8.00000 0.295891
$$732$$ 0 0
$$733$$ − 6.00000i − 0.221615i −0.993842 0.110808i $$-0.964656\pi$$
0.993842 0.110808i $$-0.0353437\pi$$
$$734$$ 32.0000 1.18114
$$735$$ 0 0
$$736$$ 8.00000 0.294884
$$737$$ 16.0000i 0.589368i
$$738$$ 0 0
$$739$$ 12.0000 0.441427 0.220714 0.975339i $$-0.429161\pi$$
0.220714 + 0.975339i $$0.429161\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ − 6.00000i − 0.220267i
$$743$$ 24.0000i 0.880475i 0.897881 + 0.440237i $$0.145106\pi$$
−0.897881 + 0.440237i $$0.854894\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ −22.0000 −0.805477
$$747$$ 0 0
$$748$$ 8.00000i 0.292509i
$$749$$ −12.0000 −0.438470
$$750$$ 0 0
$$751$$ 48.0000 1.75154 0.875772 0.482724i $$-0.160353\pi$$
0.875772 + 0.482724i $$0.160353\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 12.0000 0.437014
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 6.00000i 0.218074i 0.994038 + 0.109037i $$0.0347767\pi$$
−0.994038 + 0.109037i $$0.965223\pi$$
$$758$$ − 20.0000i − 0.726433i
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 22.0000 0.797499 0.398750 0.917060i $$-0.369444\pi$$
0.398750 + 0.917060i $$0.369444\pi$$
$$762$$ 0 0
$$763$$ − 2.00000i − 0.0724049i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ −16.0000 −0.578103
$$767$$ − 24.0000i − 0.866590i
$$768$$ 0 0
$$769$$ 14.0000 0.504853 0.252426 0.967616i $$-0.418771\pi$$
0.252426 + 0.967616i $$0.418771\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 2.00000i 0.0719816i
$$773$$ − 2.00000i − 0.0719350i −0.999353 0.0359675i $$-0.988549\pi$$
0.999353 0.0359675i $$-0.0114513\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 14.0000 0.502571
$$777$$ 0 0
$$778$$ 26.0000i 0.932145i
$$779$$ 24.0000 0.859889
$$780$$ 0 0
$$781$$ −32.0000 −1.14505
$$782$$ − 16.0000i − 0.572159i
$$783$$ 0 0
$$784$$ −1.00000 −0.0357143
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 36.0000i − 1.28326i −0.767014 0.641631i $$-0.778258\pi$$
0.767014 0.641631i $$-0.221742\pi$$
$$788$$ − 10.0000i − 0.356235i
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −14.0000 −0.497783
$$792$$ 0 0
$$793$$ − 36.0000i − 1.27840i
$$794$$ 6.00000 0.212932
$$795$$ 0 0
$$796$$ 8.00000 0.283552
$$797$$ − 6.00000i − 0.212531i −0.994338 0.106265i $$-0.966111\pi$$
0.994338 0.106265i $$-0.0338893\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 18.0000i 0.635602i
$$803$$ − 40.0000i − 1.41157i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 2.00000i 0.0703598i
$$809$$ 10.0000 0.351581 0.175791 0.984428i $$-0.443752\pi$$
0.175791 + 0.984428i $$0.443752\pi$$
$$810$$ 0 0
$$811$$ −44.0000 −1.54505 −0.772524 0.634985i $$-0.781006\pi$$
−0.772524 + 0.634985i $$0.781006\pi$$
$$812$$ − 2.00000i − 0.0701862i
$$813$$ 0 0
$$814$$ −40.0000 −1.40200
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 16.0000i 0.559769i
$$818$$ − 22.0000i − 0.769212i
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −38.0000 −1.32621 −0.663105 0.748527i $$-0.730762\pi$$
−0.663105 + 0.748527i $$0.730762\pi$$
$$822$$ 0 0
$$823$$ 56.0000i 1.95204i 0.217687 + 0.976019i $$0.430149\pi$$
−0.217687 + 0.976019i $$0.569851\pi$$
$$824$$ 8.00000 0.278693
$$825$$ 0 0
$$826$$ −4.00000 −0.139178
$$827$$ 36.0000i 1.25184i 0.779886 + 0.625921i $$0.215277\pi$$
−0.779886 + 0.625921i $$0.784723\pi$$
$$828$$ 0 0
$$829$$ 26.0000 0.903017 0.451509 0.892267i $$-0.350886\pi$$
0.451509 + 0.892267i $$0.350886\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 6.00000i 0.208013i
$$833$$ 2.00000i 0.0692959i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ −16.0000 −0.553372
$$837$$ 0 0
$$838$$ 36.0000i 1.24360i
$$839$$ 56.0000 1.93333 0.966667 0.256036i $$-0.0824164\pi$$
0.966667 + 0.256036i $$0.0824164\pi$$
$$840$$ 0 0
$$841$$ −25.0000 −0.862069
$$842$$ − 6.00000i − 0.206774i
$$843$$ 0 0
$$844$$ −20.0000 −0.688428
$$845$$ 0 0
$$846$$ 0 0
$$847$$ − 5.00000i − 0.171802i
$$848$$ 6.00000i 0.206041i
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 80.0000 2.74236
$$852$$ 0 0
$$853$$ − 14.0000i − 0.479351i −0.970853 0.239675i $$-0.922959\pi$$
0.970853 0.239675i $$-0.0770410\pi$$
$$854$$ −6.00000 −0.205316
$$855$$ 0 0
$$856$$ 12.0000 0.410152
$$857$$ − 42.0000i − 1.43469i −0.696717 0.717346i $$-0.745357\pi$$
0.696717 0.717346i $$-0.254643\pi$$
$$858$$ 0 0
$$859$$ −20.0000 −0.682391 −0.341196 0.939992i $$-0.610832\pi$$
−0.341196 + 0.939992i $$0.610832\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ − 32.0000i − 1.08929i −0.838666 0.544646i $$-0.816664\pi$$
0.838666 0.544646i $$-0.183336\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ −2.00000 −0.0679628
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 24.0000 0.813209
$$872$$ 2.00000i 0.0677285i
$$873$$ 0 0
$$874$$ 32.0000 1.08242
$$875$$ 0 0
$$876$$ 0 0
$$877$$ − 2.00000i − 0.0675352i −0.999430 0.0337676i $$-0.989249\pi$$
0.999430 0.0337676i $$-0.0107506\pi$$
$$878$$ − 24.0000i − 0.809961i
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −18.0000 −0.606435 −0.303218 0.952921i $$-0.598061\pi$$
−0.303218 + 0.952921i $$0.598061\pi$$
$$882$$ 0 0
$$883$$ − 20.0000i − 0.673054i −0.941674 0.336527i $$-0.890748\pi$$
0.941674 0.336527i $$-0.109252\pi$$
$$884$$ 12.0000 0.403604
$$885$$ 0 0
$$886$$ −4.00000 −0.134383
$$887$$ 24.0000i 0.805841i 0.915235 + 0.402921i $$0.132005\pi$$
−0.915235 + 0.402921i $$0.867995\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ − 16.0000i − 0.535720i
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 1.00000 0.0334077
$$897$$ 0 0
$$898$$ − 34.0000i − 1.13459i
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 12.0000 0.399778
$$902$$ − 24.0000i − 0.799113i
$$903$$ 0 0
$$904$$ 14.0000 0.465633
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 12.0000i 0.398453i 0.979953 + 0.199227i $$0.0638430\pi$$
−0.979953 + 0.199227i $$0.936157\pi$$
$$908$$ 12.0000i 0.398234i
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ − 16.0000i − 0.529523i
$$914$$ 10.0000 0.330771
$$915$$ 0 0
$$916$$ −2.00000 −0.0660819
$$917$$ − 20.0000i − 0.660458i
$$918$$ 0 0
$$919$$ −40.0000 −1.31948 −0.659739 0.751495i $$-0.729333\pi$$
−0.659739 + 0.751495i $$0.729333\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 22.0000i 0.724531i
$$923$$ 48.0000i 1.57994i
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 32.0000 1.05159
$$927$$ 0 0
$$928$$ 2.00000i 0.0656532i
$$929$$ 18.0000 0.590561 0.295280 0.955411i $$-0.404587\pi$$
0.295280 + 0.955411i $$0.404587\pi$$
$$930$$ 0 0
$$931$$ −4.00000 −0.131095
$$932$$ 22.0000i 0.720634i
$$933$$ 0 0
$$934$$ −28.0000 −0.916188
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 22.0000i − 0.718709i −0.933201 0.359354i $$-0.882997\pi$$
0.933201 0.359354i $$-0.117003\pi$$
$$938$$ − 4.00000i − 0.130605i
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 26.0000 0.847576 0.423788 0.905761i $$-0.360700\pi$$
0.423788 + 0.905761i $$0.360700\pi$$
$$942$$ 0 0
$$943$$ 48.0000i 1.56310i
$$944$$ 4.00000 0.130189
$$945$$ 0 0
$$946$$ 16.0000 0.520205
$$947$$ − 4.00000i − 0.129983i −0.997886 0.0649913i $$-0.979298\pi$$
0.997886 0.0649913i $$-0.0207020\pi$$
$$948$$ 0 0
$$949$$ −60.0000 −1.94768
$$950$$ 0 0
$$951$$ 0 0
$$952$$ − 2.00000i − 0.0648204i
$$953$$ 26.0000i 0.842223i 0.907009 + 0.421111i $$0.138360\pi$$
−0.907009 + 0.421111i $$0.861640\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 16.0000i 0.516937i
$$959$$ −10.0000 −0.322917
$$960$$ 0 0
$$961$$ −31.0000 −1.00000
$$962$$ 60.0000i 1.93448i
$$963$$ 0 0
$$964$$ −2.00000 −0.0644157
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 8.00000i 0.257263i 0.991692 + 0.128631i $$0.0410584\pi$$
−0.991692 + 0.128631i $$0.958942\pi$$
$$968$$ 5.00000i 0.160706i
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 12.0000 0.385098 0.192549 0.981287i $$-0.438325\pi$$
0.192549 + 0.981287i $$0.438325\pi$$
$$972$$ 0 0
$$973$$ 4.00000i 0.128234i
$$974$$ 8.00000 0.256337
$$975$$ 0 0
$$976$$ 6.00000 0.192055
$$977$$ − 18.0000i − 0.575871i −0.957650 0.287936i $$-0.907031\pi$$
0.957650 0.287936i $$-0.0929689\pi$$
$$978$$ 0 0
$$979$$ −24.0000 −0.767043
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 12.0000i 0.382935i
$$983$$ − 24.0000i − 0.765481i −0.923856 0.382741i $$-0.874980\pi$$
0.923856 0.382741i $$-0.125020\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 4.00000 0.127386
$$987$$ 0 0
$$988$$ 24.0000i 0.763542i
$$989$$ −32.0000 −1.01754
$$990$$ 0 0
$$991$$ −16.0000 −0.508257 −0.254128 0.967170i $$-0.581789\pi$$
−0.254128 + 0.967170i $$0.581789\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 8.00000 0.253745
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 14.0000i 0.443384i 0.975117 + 0.221692i $$0.0711580\pi$$
−0.975117 + 0.221692i $$0.928842\pi$$
$$998$$ − 44.0000i − 1.39280i
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.g.r.2899.1 2
3.2 odd 2 1050.2.g.a.799.2 2
5.2 odd 4 3150.2.a.bo.1.1 1
5.3 odd 4 126.2.a.a.1.1 1
5.4 even 2 inner 3150.2.g.r.2899.2 2
15.2 even 4 1050.2.a.i.1.1 1
15.8 even 4 42.2.a.a.1.1 1
15.14 odd 2 1050.2.g.a.799.1 2
20.3 even 4 1008.2.a.j.1.1 1
35.3 even 12 882.2.g.j.667.1 2
35.13 even 4 882.2.a.b.1.1 1
35.18 odd 12 882.2.g.h.667.1 2
35.23 odd 12 882.2.g.h.361.1 2
35.33 even 12 882.2.g.j.361.1 2
40.3 even 4 4032.2.a.m.1.1 1
40.13 odd 4 4032.2.a.e.1.1 1
45.13 odd 12 1134.2.f.j.379.1 2
45.23 even 12 1134.2.f.g.379.1 2
45.38 even 12 1134.2.f.g.757.1 2
45.43 odd 12 1134.2.f.j.757.1 2
60.23 odd 4 336.2.a.d.1.1 1
60.47 odd 4 8400.2.a.k.1.1 1
105.23 even 12 294.2.e.c.67.1 2
105.38 odd 12 294.2.e.a.79.1 2
105.53 even 12 294.2.e.c.79.1 2
105.62 odd 4 7350.2.a.f.1.1 1
105.68 odd 12 294.2.e.a.67.1 2
105.83 odd 4 294.2.a.g.1.1 1
120.53 even 4 1344.2.a.q.1.1 1
120.83 odd 4 1344.2.a.i.1.1 1
140.83 odd 4 7056.2.a.k.1.1 1
165.98 odd 4 5082.2.a.d.1.1 1
195.38 even 4 7098.2.a.f.1.1 1
240.53 even 4 5376.2.c.bc.2689.2 2
240.83 odd 4 5376.2.c.e.2689.2 2
240.173 even 4 5376.2.c.bc.2689.1 2
240.203 odd 4 5376.2.c.e.2689.1 2
420.23 odd 12 2352.2.q.i.1537.1 2
420.83 even 4 2352.2.a.l.1.1 1
420.143 even 12 2352.2.q.n.961.1 2
420.263 odd 12 2352.2.q.i.961.1 2
420.383 even 12 2352.2.q.n.1537.1 2
840.83 even 4 9408.2.a.bw.1.1 1
840.293 odd 4 9408.2.a.n.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.a.a.1.1 1 15.8 even 4
126.2.a.a.1.1 1 5.3 odd 4
294.2.a.g.1.1 1 105.83 odd 4
294.2.e.a.67.1 2 105.68 odd 12
294.2.e.a.79.1 2 105.38 odd 12
294.2.e.c.67.1 2 105.23 even 12
294.2.e.c.79.1 2 105.53 even 12
336.2.a.d.1.1 1 60.23 odd 4
882.2.a.b.1.1 1 35.13 even 4
882.2.g.h.361.1 2 35.23 odd 12
882.2.g.h.667.1 2 35.18 odd 12
882.2.g.j.361.1 2 35.33 even 12
882.2.g.j.667.1 2 35.3 even 12
1008.2.a.j.1.1 1 20.3 even 4
1050.2.a.i.1.1 1 15.2 even 4
1050.2.g.a.799.1 2 15.14 odd 2
1050.2.g.a.799.2 2 3.2 odd 2
1134.2.f.g.379.1 2 45.23 even 12
1134.2.f.g.757.1 2 45.38 even 12
1134.2.f.j.379.1 2 45.13 odd 12
1134.2.f.j.757.1 2 45.43 odd 12
1344.2.a.i.1.1 1 120.83 odd 4
1344.2.a.q.1.1 1 120.53 even 4
2352.2.a.l.1.1 1 420.83 even 4
2352.2.q.i.961.1 2 420.263 odd 12
2352.2.q.i.1537.1 2 420.23 odd 12
2352.2.q.n.961.1 2 420.143 even 12
2352.2.q.n.1537.1 2 420.383 even 12
3150.2.a.bo.1.1 1 5.2 odd 4
3150.2.g.r.2899.1 2 1.1 even 1 trivial
3150.2.g.r.2899.2 2 5.4 even 2 inner
4032.2.a.e.1.1 1 40.13 odd 4
4032.2.a.m.1.1 1 40.3 even 4
5082.2.a.d.1.1 1 165.98 odd 4
5376.2.c.e.2689.1 2 240.203 odd 4
5376.2.c.e.2689.2 2 240.83 odd 4
5376.2.c.bc.2689.1 2 240.173 even 4
5376.2.c.bc.2689.2 2 240.53 even 4
7056.2.a.k.1.1 1 140.83 odd 4
7098.2.a.f.1.1 1 195.38 even 4
7350.2.a.f.1.1 1 105.62 odd 4
8400.2.a.k.1.1 1 60.47 odd 4
9408.2.a.n.1.1 1 840.293 odd 4
9408.2.a.bw.1.1 1 840.83 even 4