# Properties

 Label 3150.2.g.q Level $3150$ Weight $2$ Character orbit 3150.g Analytic conductor $25.153$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3150.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$25.1528766367$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - q^{4} + i q^{7} -i q^{8} +O(q^{10})$$ $$q + i q^{2} - q^{4} + i q^{7} -i q^{8} + 4 q^{11} -2 i q^{13} - q^{14} + q^{16} + 2 i q^{17} -4 q^{19} + 4 i q^{22} + 8 i q^{23} + 2 q^{26} -i q^{28} -2 q^{29} + i q^{32} -2 q^{34} -6 i q^{37} -4 i q^{38} + 6 q^{41} -4 i q^{43} -4 q^{44} -8 q^{46} - q^{49} + 2 i q^{52} + 10 i q^{53} + q^{56} -2 i q^{58} + 12 q^{59} + 14 q^{61} - q^{64} + 12 i q^{67} -2 i q^{68} + 8 q^{71} + 10 i q^{73} + 6 q^{74} + 4 q^{76} + 4 i q^{77} -16 q^{79} + 6 i q^{82} + 12 i q^{83} + 4 q^{86} -4 i q^{88} + 10 q^{89} + 2 q^{91} -8 i q^{92} -2 i q^{97} -i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + O(q^{10})$$ $$2q - 2q^{4} + 8q^{11} - 2q^{14} + 2q^{16} - 8q^{19} + 4q^{26} - 4q^{29} - 4q^{34} + 12q^{41} - 8q^{44} - 16q^{46} - 2q^{49} + 2q^{56} + 24q^{59} + 28q^{61} - 2q^{64} + 16q^{71} + 12q^{74} + 8q^{76} - 32q^{79} + 8q^{86} + 20q^{89} + 4q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$2801$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2899.1
 − 1.00000i 1.00000i
1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
2899.2 1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.g.q 2
3.b odd 2 1 1050.2.g.g 2
5.b even 2 1 inner 3150.2.g.q 2
5.c odd 4 1 630.2.a.a 1
5.c odd 4 1 3150.2.a.bp 1
15.d odd 2 1 1050.2.g.g 2
15.e even 4 1 210.2.a.e 1
15.e even 4 1 1050.2.a.c 1
20.e even 4 1 5040.2.a.k 1
35.f even 4 1 4410.2.a.t 1
60.l odd 4 1 1680.2.a.j 1
60.l odd 4 1 8400.2.a.ce 1
105.k odd 4 1 1470.2.a.j 1
105.k odd 4 1 7350.2.a.w 1
105.w odd 12 2 1470.2.i.j 2
105.x even 12 2 1470.2.i.a 2
120.q odd 4 1 6720.2.a.bq 1
120.w even 4 1 6720.2.a.j 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.e 1 15.e even 4 1
630.2.a.a 1 5.c odd 4 1
1050.2.a.c 1 15.e even 4 1
1050.2.g.g 2 3.b odd 2 1
1050.2.g.g 2 15.d odd 2 1
1470.2.a.j 1 105.k odd 4 1
1470.2.i.a 2 105.x even 12 2
1470.2.i.j 2 105.w odd 12 2
1680.2.a.j 1 60.l odd 4 1
3150.2.a.bp 1 5.c odd 4 1
3150.2.g.q 2 1.a even 1 1 trivial
3150.2.g.q 2 5.b even 2 1 inner
4410.2.a.t 1 35.f even 4 1
5040.2.a.k 1 20.e even 4 1
6720.2.a.j 1 120.w even 4 1
6720.2.a.bq 1 120.q odd 4 1
7350.2.a.w 1 105.k odd 4 1
8400.2.a.ce 1 60.l odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3150, [\chi])$$:

 $$T_{11} - 4$$ $$T_{13}^{2} + 4$$ $$T_{17}^{2} + 4$$ $$T_{19} + 4$$ $$T_{29} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$1 + T^{2}$$
$11$ $$( -4 + T )^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$64 + T^{2}$$
$29$ $$( 2 + T )^{2}$$
$31$ $$T^{2}$$
$37$ $$36 + T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$16 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$100 + T^{2}$$
$59$ $$( -12 + T )^{2}$$
$61$ $$( -14 + T )^{2}$$
$67$ $$144 + T^{2}$$
$71$ $$( -8 + T )^{2}$$
$73$ $$100 + T^{2}$$
$79$ $$( 16 + T )^{2}$$
$83$ $$144 + T^{2}$$
$89$ $$( -10 + T )^{2}$$
$97$ $$4 + T^{2}$$