Properties

Label 3150.2.g.q
Level 3150
Weight 2
Character orbit 3150.g
Analytic conductor 25.153
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + i q^{7} -i q^{8} +O(q^{10})\) \( q + i q^{2} - q^{4} + i q^{7} -i q^{8} + 4 q^{11} -2 i q^{13} - q^{14} + q^{16} + 2 i q^{17} -4 q^{19} + 4 i q^{22} + 8 i q^{23} + 2 q^{26} -i q^{28} -2 q^{29} + i q^{32} -2 q^{34} -6 i q^{37} -4 i q^{38} + 6 q^{41} -4 i q^{43} -4 q^{44} -8 q^{46} - q^{49} + 2 i q^{52} + 10 i q^{53} + q^{56} -2 i q^{58} + 12 q^{59} + 14 q^{61} - q^{64} + 12 i q^{67} -2 i q^{68} + 8 q^{71} + 10 i q^{73} + 6 q^{74} + 4 q^{76} + 4 i q^{77} -16 q^{79} + 6 i q^{82} + 12 i q^{83} + 4 q^{86} -4 i q^{88} + 10 q^{89} + 2 q^{91} -8 i q^{92} -2 i q^{97} -i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} + 8q^{11} - 2q^{14} + 2q^{16} - 8q^{19} + 4q^{26} - 4q^{29} - 4q^{34} + 12q^{41} - 8q^{44} - 16q^{46} - 2q^{49} + 2q^{56} + 24q^{59} + 28q^{61} - 2q^{64} + 16q^{71} + 12q^{74} + 8q^{76} - 32q^{79} + 8q^{86} + 20q^{89} + 4q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2899.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
2899.2 1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.g.q 2
3.b odd 2 1 1050.2.g.g 2
5.b even 2 1 inner 3150.2.g.q 2
5.c odd 4 1 630.2.a.a 1
5.c odd 4 1 3150.2.a.bp 1
15.d odd 2 1 1050.2.g.g 2
15.e even 4 1 210.2.a.e 1
15.e even 4 1 1050.2.a.c 1
20.e even 4 1 5040.2.a.k 1
35.f even 4 1 4410.2.a.t 1
60.l odd 4 1 1680.2.a.j 1
60.l odd 4 1 8400.2.a.ce 1
105.k odd 4 1 1470.2.a.j 1
105.k odd 4 1 7350.2.a.w 1
105.w odd 12 2 1470.2.i.j 2
105.x even 12 2 1470.2.i.a 2
120.q odd 4 1 6720.2.a.bq 1
120.w even 4 1 6720.2.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.e 1 15.e even 4 1
630.2.a.a 1 5.c odd 4 1
1050.2.a.c 1 15.e even 4 1
1050.2.g.g 2 3.b odd 2 1
1050.2.g.g 2 15.d odd 2 1
1470.2.a.j 1 105.k odd 4 1
1470.2.i.a 2 105.x even 12 2
1470.2.i.j 2 105.w odd 12 2
1680.2.a.j 1 60.l odd 4 1
3150.2.a.bp 1 5.c odd 4 1
3150.2.g.q 2 1.a even 1 1 trivial
3150.2.g.q 2 5.b even 2 1 inner
4410.2.a.t 1 35.f even 4 1
5040.2.a.k 1 20.e even 4 1
6720.2.a.j 1 120.w even 4 1
6720.2.a.bq 1 120.q odd 4 1
7350.2.a.w 1 105.k odd 4 1
8400.2.a.ce 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):

\( T_{11} - 4 \)
\( T_{13}^{2} + 4 \)
\( T_{17}^{2} + 4 \)
\( T_{19} + 4 \)
\( T_{29} + 2 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( \)
$5$ \( \)
$7$ \( 1 + T^{2} \)
$11$ \( ( 1 - 4 T + 11 T^{2} )^{2} \)
$13$ \( 1 - 22 T^{2} + 169 T^{4} \)
$17$ \( ( 1 - 8 T + 17 T^{2} )( 1 + 8 T + 17 T^{2} ) \)
$19$ \( ( 1 + 4 T + 19 T^{2} )^{2} \)
$23$ \( 1 + 18 T^{2} + 529 T^{4} \)
$29$ \( ( 1 + 2 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 + 31 T^{2} )^{2} \)
$37$ \( 1 - 38 T^{2} + 1369 T^{4} \)
$41$ \( ( 1 - 6 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 70 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 - 47 T^{2} )^{2} \)
$53$ \( 1 - 6 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 - 12 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2} \)
$67$ \( 1 + 10 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 - 8 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 46 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 16 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 22 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 - 10 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 190 T^{2} + 9409 T^{4} \)
show more
show less