# Properties

 Label 3150.2.g.o.2899.1 Level 3150 Weight 2 Character 3150.2899 Analytic conductor 25.153 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ = $$3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 3150.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$25.1528766367$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 2899.1 Root $$-1.00000i$$ Character $$\chi$$ = 3150.2899 Dual form 3150.2.g.o.2899.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} +1.00000i q^{8} +O(q^{10})$$ $$q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} +1.00000i q^{8} -2.00000i q^{13} +1.00000 q^{14} +1.00000 q^{16} +6.00000i q^{17} +4.00000 q^{19} -2.00000 q^{26} -1.00000i q^{28} -6.00000 q^{29} -4.00000 q^{31} -1.00000i q^{32} +6.00000 q^{34} +2.00000i q^{37} -4.00000i q^{38} -6.00000 q^{41} -8.00000i q^{43} +12.0000i q^{47} -1.00000 q^{49} +2.00000i q^{52} +6.00000i q^{53} -1.00000 q^{56} +6.00000i q^{58} -12.0000 q^{59} +2.00000 q^{61} +4.00000i q^{62} -1.00000 q^{64} +8.00000i q^{67} -6.00000i q^{68} -14.0000i q^{73} +2.00000 q^{74} -4.00000 q^{76} +16.0000 q^{79} +6.00000i q^{82} +12.0000i q^{83} -8.00000 q^{86} +6.00000 q^{89} +2.00000 q^{91} +12.0000 q^{94} +14.0000i q^{97} +1.00000i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + O(q^{10})$$ $$2q - 2q^{4} + 2q^{14} + 2q^{16} + 8q^{19} - 4q^{26} - 12q^{29} - 8q^{31} + 12q^{34} - 12q^{41} - 2q^{49} - 2q^{56} - 24q^{59} + 4q^{61} - 2q^{64} + 4q^{74} - 8q^{76} + 32q^{79} - 16q^{86} + 12q^{89} + 4q^{91} + 24q^{94} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$2801$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ − 1.00000i − 0.707107i
$$3$$ 0 0
$$4$$ −1.00000 −0.500000
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 1.00000i 0.377964i
$$8$$ 1.00000i 0.353553i
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 0 0
$$13$$ − 2.00000i − 0.554700i −0.960769 0.277350i $$-0.910544\pi$$
0.960769 0.277350i $$-0.0894562\pi$$
$$14$$ 1.00000 0.267261
$$15$$ 0 0
$$16$$ 1.00000 0.250000
$$17$$ 6.00000i 1.45521i 0.685994 + 0.727607i $$0.259367\pi$$
−0.685994 + 0.727607i $$0.740633\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.917663 0.458831 0.888523i $$-0.348268\pi$$
0.458831 + 0.888523i $$0.348268\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ −2.00000 −0.392232
$$27$$ 0 0
$$28$$ − 1.00000i − 0.188982i
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ − 1.00000i − 0.176777i
$$33$$ 0 0
$$34$$ 6.00000 1.02899
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 2.00000i 0.328798i 0.986394 + 0.164399i $$0.0525685\pi$$
−0.986394 + 0.164399i $$0.947432\pi$$
$$38$$ − 4.00000i − 0.648886i
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ − 8.00000i − 1.21999i −0.792406 0.609994i $$-0.791172\pi$$
0.792406 0.609994i $$-0.208828\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 12.0000i 1.75038i 0.483779 + 0.875190i $$0.339264\pi$$
−0.483779 + 0.875190i $$0.660736\pi$$
$$48$$ 0 0
$$49$$ −1.00000 −0.142857
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 2.00000i 0.277350i
$$53$$ 6.00000i 0.824163i 0.911147 + 0.412082i $$0.135198\pi$$
−0.911147 + 0.412082i $$0.864802\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ −1.00000 −0.133631
$$57$$ 0 0
$$58$$ 6.00000i 0.787839i
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ 2.00000 0.256074 0.128037 0.991769i $$-0.459132\pi$$
0.128037 + 0.991769i $$0.459132\pi$$
$$62$$ 4.00000i 0.508001i
$$63$$ 0 0
$$64$$ −1.00000 −0.125000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 8.00000i 0.977356i 0.872464 + 0.488678i $$0.162521\pi$$
−0.872464 + 0.488678i $$0.837479\pi$$
$$68$$ − 6.00000i − 0.727607i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ − 14.0000i − 1.63858i −0.573382 0.819288i $$-0.694369\pi$$
0.573382 0.819288i $$-0.305631\pi$$
$$74$$ 2.00000 0.232495
$$75$$ 0 0
$$76$$ −4.00000 −0.458831
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 16.0000 1.80014 0.900070 0.435745i $$-0.143515\pi$$
0.900070 + 0.435745i $$0.143515\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 6.00000i 0.662589i
$$83$$ 12.0000i 1.31717i 0.752506 + 0.658586i $$0.228845\pi$$
−0.752506 + 0.658586i $$0.771155\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ −8.00000 −0.862662
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ 2.00000 0.209657
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 12.0000 1.23771
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 14.0000i 1.42148i 0.703452 + 0.710742i $$0.251641\pi$$
−0.703452 + 0.710742i $$0.748359\pi$$
$$98$$ 1.00000i 0.101015i
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 6.00000 0.597022 0.298511 0.954406i $$-0.403510\pi$$
0.298511 + 0.954406i $$0.403510\pi$$
$$102$$ 0 0
$$103$$ 16.0000i 1.57653i 0.615338 + 0.788263i $$0.289020\pi$$
−0.615338 + 0.788263i $$0.710980\pi$$
$$104$$ 2.00000 0.196116
$$105$$ 0 0
$$106$$ 6.00000 0.582772
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ −14.0000 −1.34096 −0.670478 0.741929i $$-0.733911\pi$$
−0.670478 + 0.741929i $$0.733911\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 1.00000i 0.0944911i
$$113$$ 18.0000i 1.69330i 0.532152 + 0.846649i $$0.321383\pi$$
−0.532152 + 0.846649i $$0.678617\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 6.00000 0.557086
$$117$$ 0 0
$$118$$ 12.0000i 1.10469i
$$119$$ −6.00000 −0.550019
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ − 2.00000i − 0.181071i
$$123$$ 0 0
$$124$$ 4.00000 0.359211
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 8.00000i 0.709885i 0.934888 + 0.354943i $$0.115500\pi$$
−0.934888 + 0.354943i $$0.884500\pi$$
$$128$$ 1.00000i 0.0883883i
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −12.0000 −1.04844 −0.524222 0.851581i $$-0.675644\pi$$
−0.524222 + 0.851581i $$0.675644\pi$$
$$132$$ 0 0
$$133$$ 4.00000i 0.346844i
$$134$$ 8.00000 0.691095
$$135$$ 0 0
$$136$$ −6.00000 −0.514496
$$137$$ 6.00000i 0.512615i 0.966595 + 0.256307i $$0.0825059\pi$$
−0.966595 + 0.256307i $$0.917494\pi$$
$$138$$ 0 0
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ −14.0000 −1.15865
$$147$$ 0 0
$$148$$ − 2.00000i − 0.164399i
$$149$$ 18.0000 1.47462 0.737309 0.675556i $$-0.236096\pi$$
0.737309 + 0.675556i $$0.236096\pi$$
$$150$$ 0 0
$$151$$ −16.0000 −1.30206 −0.651031 0.759051i $$-0.725663\pi$$
−0.651031 + 0.759051i $$0.725663\pi$$
$$152$$ 4.00000i 0.324443i
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 2.00000i 0.159617i 0.996810 + 0.0798087i $$0.0254309\pi$$
−0.996810 + 0.0798087i $$0.974569\pi$$
$$158$$ − 16.0000i − 1.27289i
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 16.0000i 1.25322i 0.779334 + 0.626608i $$0.215557\pi$$
−0.779334 + 0.626608i $$0.784443\pi$$
$$164$$ 6.00000 0.468521
$$165$$ 0 0
$$166$$ 12.0000 0.931381
$$167$$ − 12.0000i − 0.928588i −0.885681 0.464294i $$-0.846308\pi$$
0.885681 0.464294i $$-0.153692\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 8.00000i 0.609994i
$$173$$ − 6.00000i − 0.456172i −0.973641 0.228086i $$-0.926753\pi$$
0.973641 0.228086i $$-0.0732467\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ − 6.00000i − 0.449719i
$$179$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$180$$ 0 0
$$181$$ 2.00000 0.148659 0.0743294 0.997234i $$-0.476318\pi$$
0.0743294 + 0.997234i $$0.476318\pi$$
$$182$$ − 2.00000i − 0.148250i
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ − 12.0000i − 0.875190i
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ 22.0000i 1.58359i 0.610784 + 0.791797i $$0.290854\pi$$
−0.610784 + 0.791797i $$0.709146\pi$$
$$194$$ 14.0000 1.00514
$$195$$ 0 0
$$196$$ 1.00000 0.0714286
$$197$$ 18.0000i 1.28245i 0.767354 + 0.641223i $$0.221573\pi$$
−0.767354 + 0.641223i $$0.778427\pi$$
$$198$$ 0 0
$$199$$ 4.00000 0.283552 0.141776 0.989899i $$-0.454719\pi$$
0.141776 + 0.989899i $$0.454719\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ − 6.00000i − 0.422159i
$$203$$ − 6.00000i − 0.421117i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 16.0000 1.11477
$$207$$ 0 0
$$208$$ − 2.00000i − 0.138675i
$$209$$ 0 0
$$210$$ 0 0
$$211$$ −28.0000 −1.92760 −0.963800 0.266627i $$-0.914091\pi$$
−0.963800 + 0.266627i $$0.914091\pi$$
$$212$$ − 6.00000i − 0.412082i
$$213$$ 0 0
$$214$$ −12.0000 −0.820303
$$215$$ 0 0
$$216$$ 0 0
$$217$$ − 4.00000i − 0.271538i
$$218$$ 14.0000i 0.948200i
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 12.0000 0.807207
$$222$$ 0 0
$$223$$ 16.0000i 1.07144i 0.844396 + 0.535720i $$0.179960\pi$$
−0.844396 + 0.535720i $$0.820040\pi$$
$$224$$ 1.00000 0.0668153
$$225$$ 0 0
$$226$$ 18.0000 1.19734
$$227$$ 12.0000i 0.796468i 0.917284 + 0.398234i $$0.130377\pi$$
−0.917284 + 0.398234i $$0.869623\pi$$
$$228$$ 0 0
$$229$$ −2.00000 −0.132164 −0.0660819 0.997814i $$-0.521050\pi$$
−0.0660819 + 0.997814i $$0.521050\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ − 6.00000i − 0.393919i
$$233$$ − 6.00000i − 0.393073i −0.980497 0.196537i $$-0.937031\pi$$
0.980497 0.196537i $$-0.0629694\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 12.0000 0.781133
$$237$$ 0 0
$$238$$ 6.00000i 0.388922i
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ 26.0000 1.67481 0.837404 0.546585i $$-0.184072\pi$$
0.837404 + 0.546585i $$0.184072\pi$$
$$242$$ 11.0000i 0.707107i
$$243$$ 0 0
$$244$$ −2.00000 −0.128037
$$245$$ 0 0
$$246$$ 0 0
$$247$$ − 8.00000i − 0.509028i
$$248$$ − 4.00000i − 0.254000i
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −12.0000 −0.757433 −0.378717 0.925513i $$-0.623635\pi$$
−0.378717 + 0.925513i $$0.623635\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 8.00000 0.501965
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ 6.00000i 0.374270i 0.982334 + 0.187135i $$0.0599201\pi$$
−0.982334 + 0.187135i $$0.940080\pi$$
$$258$$ 0 0
$$259$$ −2.00000 −0.124274
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 12.0000i 0.741362i
$$263$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 4.00000 0.245256
$$267$$ 0 0
$$268$$ − 8.00000i − 0.488678i
$$269$$ 18.0000 1.09748 0.548740 0.835993i $$-0.315108\pi$$
0.548740 + 0.835993i $$0.315108\pi$$
$$270$$ 0 0
$$271$$ 20.0000 1.21491 0.607457 0.794353i $$-0.292190\pi$$
0.607457 + 0.794353i $$0.292190\pi$$
$$272$$ 6.00000i 0.363803i
$$273$$ 0 0
$$274$$ 6.00000 0.362473
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 22.0000i − 1.32185i −0.750451 0.660926i $$-0.770164\pi$$
0.750451 0.660926i $$-0.229836\pi$$
$$278$$ − 4.00000i − 0.239904i
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 30.0000 1.78965 0.894825 0.446417i $$-0.147300\pi$$
0.894825 + 0.446417i $$0.147300\pi$$
$$282$$ 0 0
$$283$$ − 20.0000i − 1.18888i −0.804141 0.594438i $$-0.797374\pi$$
0.804141 0.594438i $$-0.202626\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ − 6.00000i − 0.354169i
$$288$$ 0 0
$$289$$ −19.0000 −1.11765
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 14.0000i 0.819288i
$$293$$ − 6.00000i − 0.350524i −0.984522 0.175262i $$-0.943923\pi$$
0.984522 0.175262i $$-0.0560772\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ −2.00000 −0.116248
$$297$$ 0 0
$$298$$ − 18.0000i − 1.04271i
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 8.00000 0.461112
$$302$$ 16.0000i 0.920697i
$$303$$ 0 0
$$304$$ 4.00000 0.229416
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 20.0000i 1.14146i 0.821138 + 0.570730i $$0.193340\pi$$
−0.821138 + 0.570730i $$0.806660\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 10.0000i 0.565233i 0.959233 + 0.282617i $$0.0912024\pi$$
−0.959233 + 0.282617i $$0.908798\pi$$
$$314$$ 2.00000 0.112867
$$315$$ 0 0
$$316$$ −16.0000 −0.900070
$$317$$ − 30.0000i − 1.68497i −0.538721 0.842484i $$-0.681092\pi$$
0.538721 0.842484i $$-0.318908\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 24.0000i 1.33540i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 16.0000 0.886158
$$327$$ 0 0
$$328$$ − 6.00000i − 0.331295i
$$329$$ −12.0000 −0.661581
$$330$$ 0 0
$$331$$ −4.00000 −0.219860 −0.109930 0.993939i $$-0.535063\pi$$
−0.109930 + 0.993939i $$0.535063\pi$$
$$332$$ − 12.0000i − 0.658586i
$$333$$ 0 0
$$334$$ −12.0000 −0.656611
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 22.0000i − 1.19842i −0.800593 0.599208i $$-0.795482\pi$$
0.800593 0.599208i $$-0.204518\pi$$
$$338$$ − 9.00000i − 0.489535i
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ − 1.00000i − 0.0539949i
$$344$$ 8.00000 0.431331
$$345$$ 0 0
$$346$$ −6.00000 −0.322562
$$347$$ − 12.0000i − 0.644194i −0.946707 0.322097i $$-0.895612\pi$$
0.946707 0.322097i $$-0.104388\pi$$
$$348$$ 0 0
$$349$$ −26.0000 −1.39175 −0.695874 0.718164i $$-0.744983\pi$$
−0.695874 + 0.718164i $$0.744983\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 18.0000i 0.958043i 0.877803 + 0.479022i $$0.159008\pi$$
−0.877803 + 0.479022i $$0.840992\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ −6.00000 −0.317999
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ − 2.00000i − 0.105118i
$$363$$ 0 0
$$364$$ −2.00000 −0.104828
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 8.00000i 0.417597i 0.977959 + 0.208798i $$0.0669552\pi$$
−0.977959 + 0.208798i $$0.933045\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −6.00000 −0.311504
$$372$$ 0 0
$$373$$ − 26.0000i − 1.34623i −0.739538 0.673114i $$-0.764956\pi$$
0.739538 0.673114i $$-0.235044\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ −12.0000 −0.618853
$$377$$ 12.0000i 0.618031i
$$378$$ 0 0
$$379$$ −20.0000 −1.02733 −0.513665 0.857991i $$-0.671713\pi$$
−0.513665 + 0.857991i $$0.671713\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ − 36.0000i − 1.83951i −0.392488 0.919757i $$-0.628386\pi$$
0.392488 0.919757i $$-0.371614\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 22.0000 1.11977
$$387$$ 0 0
$$388$$ − 14.0000i − 0.710742i
$$389$$ −30.0000 −1.52106 −0.760530 0.649303i $$-0.775061\pi$$
−0.760530 + 0.649303i $$0.775061\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ − 1.00000i − 0.0505076i
$$393$$ 0 0
$$394$$ 18.0000 0.906827
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 2.00000i 0.100377i 0.998740 + 0.0501886i $$0.0159822\pi$$
−0.998740 + 0.0501886i $$0.984018\pi$$
$$398$$ − 4.00000i − 0.200502i
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −18.0000 −0.898877 −0.449439 0.893311i $$-0.648376\pi$$
−0.449439 + 0.893311i $$0.648376\pi$$
$$402$$ 0 0
$$403$$ 8.00000i 0.398508i
$$404$$ −6.00000 −0.298511
$$405$$ 0 0
$$406$$ −6.00000 −0.297775
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 22.0000 1.08783 0.543915 0.839140i $$-0.316941\pi$$
0.543915 + 0.839140i $$0.316941\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ − 16.0000i − 0.788263i
$$413$$ − 12.0000i − 0.590481i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ −2.00000 −0.0980581
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −12.0000 −0.586238 −0.293119 0.956076i $$-0.594693\pi$$
−0.293119 + 0.956076i $$0.594693\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 28.0000i 1.36302i
$$423$$ 0 0
$$424$$ −6.00000 −0.291386
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 2.00000i 0.0967868i
$$428$$ 12.0000i 0.580042i
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −24.0000 −1.15604 −0.578020 0.816023i $$-0.696174\pi$$
−0.578020 + 0.816023i $$0.696174\pi$$
$$432$$ 0 0
$$433$$ 34.0000i 1.63394i 0.576683 + 0.816968i $$0.304347\pi$$
−0.576683 + 0.816968i $$0.695653\pi$$
$$434$$ −4.00000 −0.192006
$$435$$ 0 0
$$436$$ 14.0000 0.670478
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 28.0000 1.33637 0.668184 0.743996i $$-0.267072\pi$$
0.668184 + 0.743996i $$0.267072\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ − 12.0000i − 0.570782i
$$443$$ 12.0000i 0.570137i 0.958507 + 0.285069i $$0.0920164\pi$$
−0.958507 + 0.285069i $$0.907984\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 16.0000 0.757622
$$447$$ 0 0
$$448$$ − 1.00000i − 0.0472456i
$$449$$ −6.00000 −0.283158 −0.141579 0.989927i $$-0.545218\pi$$
−0.141579 + 0.989927i $$0.545218\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ − 18.0000i − 0.846649i
$$453$$ 0 0
$$454$$ 12.0000 0.563188
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 2.00000i 0.0935561i 0.998905 + 0.0467780i $$0.0148953\pi$$
−0.998905 + 0.0467780i $$0.985105\pi$$
$$458$$ 2.00000i 0.0934539i
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 30.0000 1.39724 0.698620 0.715493i $$-0.253798\pi$$
0.698620 + 0.715493i $$0.253798\pi$$
$$462$$ 0 0
$$463$$ 16.0000i 0.743583i 0.928316 + 0.371792i $$0.121256\pi$$
−0.928316 + 0.371792i $$0.878744\pi$$
$$464$$ −6.00000 −0.278543
$$465$$ 0 0
$$466$$ −6.00000 −0.277945
$$467$$ − 12.0000i − 0.555294i −0.960683 0.277647i $$-0.910445\pi$$
0.960683 0.277647i $$-0.0895545\pi$$
$$468$$ 0 0
$$469$$ −8.00000 −0.369406
$$470$$ 0 0
$$471$$ 0 0
$$472$$ − 12.0000i − 0.552345i
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 6.00000 0.275010
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −24.0000 −1.09659 −0.548294 0.836286i $$-0.684723\pi$$
−0.548294 + 0.836286i $$0.684723\pi$$
$$480$$ 0 0
$$481$$ 4.00000 0.182384
$$482$$ − 26.0000i − 1.18427i
$$483$$ 0 0
$$484$$ 11.0000 0.500000
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 16.0000i − 0.725029i −0.931978 0.362515i $$-0.881918\pi$$
0.931978 0.362515i $$-0.118082\pi$$
$$488$$ 2.00000i 0.0905357i
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −24.0000 −1.08310 −0.541552 0.840667i $$-0.682163\pi$$
−0.541552 + 0.840667i $$0.682163\pi$$
$$492$$ 0 0
$$493$$ − 36.0000i − 1.62136i
$$494$$ −8.00000 −0.359937
$$495$$ 0 0
$$496$$ −4.00000 −0.179605
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 4.00000 0.179065 0.0895323 0.995984i $$-0.471463\pi$$
0.0895323 + 0.995984i $$0.471463\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 12.0000i 0.535586i
$$503$$ 12.0000i 0.535054i 0.963550 + 0.267527i $$0.0862064\pi$$
−0.963550 + 0.267527i $$0.913794\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ − 8.00000i − 0.354943i
$$509$$ 18.0000 0.797836 0.398918 0.916987i $$-0.369386\pi$$
0.398918 + 0.916987i $$0.369386\pi$$
$$510$$ 0 0
$$511$$ 14.0000 0.619324
$$512$$ − 1.00000i − 0.0441942i
$$513$$ 0 0
$$514$$ 6.00000 0.264649
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 2.00000i 0.0878750i
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −6.00000 −0.262865 −0.131432 0.991325i $$-0.541958\pi$$
−0.131432 + 0.991325i $$0.541958\pi$$
$$522$$ 0 0
$$523$$ − 20.0000i − 0.874539i −0.899331 0.437269i $$-0.855946\pi$$
0.899331 0.437269i $$-0.144054\pi$$
$$524$$ 12.0000 0.524222
$$525$$ 0 0
$$526$$ 0 0
$$527$$ − 24.0000i − 1.04546i
$$528$$ 0 0
$$529$$ 23.0000 1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ − 4.00000i − 0.173422i
$$533$$ 12.0000i 0.519778i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ −8.00000 −0.345547
$$537$$ 0 0
$$538$$ − 18.0000i − 0.776035i
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 38.0000 1.63375 0.816874 0.576816i $$-0.195705\pi$$
0.816874 + 0.576816i $$0.195705\pi$$
$$542$$ − 20.0000i − 0.859074i
$$543$$ 0 0
$$544$$ 6.00000 0.257248
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 8.00000i 0.342055i 0.985266 + 0.171028i $$0.0547087\pi$$
−0.985266 + 0.171028i $$0.945291\pi$$
$$548$$ − 6.00000i − 0.256307i
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −24.0000 −1.02243
$$552$$ 0 0
$$553$$ 16.0000i 0.680389i
$$554$$ −22.0000 −0.934690
$$555$$ 0 0
$$556$$ −4.00000 −0.169638
$$557$$ − 30.0000i − 1.27114i −0.772043 0.635570i $$-0.780765\pi$$
0.772043 0.635570i $$-0.219235\pi$$
$$558$$ 0 0
$$559$$ −16.0000 −0.676728
$$560$$ 0 0
$$561$$ 0 0
$$562$$ − 30.0000i − 1.26547i
$$563$$ − 36.0000i − 1.51722i −0.651546 0.758610i $$-0.725879\pi$$
0.651546 0.758610i $$-0.274121\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ −20.0000 −0.840663
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −6.00000 −0.251533 −0.125767 0.992060i $$-0.540139\pi$$
−0.125767 + 0.992060i $$0.540139\pi$$
$$570$$ 0 0
$$571$$ −4.00000 −0.167395 −0.0836974 0.996491i $$-0.526673\pi$$
−0.0836974 + 0.996491i $$0.526673\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ −6.00000 −0.250435
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 34.0000i − 1.41544i −0.706494 0.707719i $$-0.749724\pi$$
0.706494 0.707719i $$-0.250276\pi$$
$$578$$ 19.0000i 0.790296i
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −12.0000 −0.497844
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 14.0000 0.579324
$$585$$ 0 0
$$586$$ −6.00000 −0.247858
$$587$$ 12.0000i 0.495293i 0.968850 + 0.247647i $$0.0796572\pi$$
−0.968850 + 0.247647i $$0.920343\pi$$
$$588$$ 0 0
$$589$$ −16.0000 −0.659269
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 2.00000i 0.0821995i
$$593$$ 42.0000i 1.72473i 0.506284 + 0.862367i $$0.331019\pi$$
−0.506284 + 0.862367i $$0.668981\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −18.0000 −0.737309
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −24.0000 −0.980613 −0.490307 0.871550i $$-0.663115\pi$$
−0.490307 + 0.871550i $$0.663115\pi$$
$$600$$ 0 0
$$601$$ 2.00000 0.0815817 0.0407909 0.999168i $$-0.487012\pi$$
0.0407909 + 0.999168i $$0.487012\pi$$
$$602$$ − 8.00000i − 0.326056i
$$603$$ 0 0
$$604$$ 16.0000 0.651031
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 32.0000i 1.29884i 0.760430 + 0.649420i $$0.224988\pi$$
−0.760430 + 0.649420i $$0.775012\pi$$
$$608$$ − 4.00000i − 0.162221i
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 24.0000 0.970936
$$612$$ 0 0
$$613$$ − 2.00000i − 0.0807792i −0.999184 0.0403896i $$-0.987140\pi$$
0.999184 0.0403896i $$-0.0128599\pi$$
$$614$$ 20.0000 0.807134
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 42.0000i − 1.69086i −0.534089 0.845428i $$-0.679345\pi$$
0.534089 0.845428i $$-0.320655\pi$$
$$618$$ 0 0
$$619$$ 28.0000 1.12542 0.562708 0.826656i $$-0.309760\pi$$
0.562708 + 0.826656i $$0.309760\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 6.00000i 0.240385i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 10.0000 0.399680
$$627$$ 0 0
$$628$$ − 2.00000i − 0.0798087i
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ −16.0000 −0.636950 −0.318475 0.947931i $$-0.603171\pi$$
−0.318475 + 0.947931i $$0.603171\pi$$
$$632$$ 16.0000i 0.636446i
$$633$$ 0 0
$$634$$ −30.0000 −1.19145
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 2.00000i 0.0792429i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −18.0000 −0.710957 −0.355479 0.934684i $$-0.615682\pi$$
−0.355479 + 0.934684i $$0.615682\pi$$
$$642$$ 0 0
$$643$$ 4.00000i 0.157745i 0.996885 + 0.0788723i $$0.0251319\pi$$
−0.996885 + 0.0788723i $$0.974868\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 24.0000 0.944267
$$647$$ 12.0000i 0.471769i 0.971781 + 0.235884i $$0.0757987\pi$$
−0.971781 + 0.235884i $$0.924201\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ − 16.0000i − 0.626608i
$$653$$ − 42.0000i − 1.64359i −0.569785 0.821794i $$-0.692974\pi$$
0.569785 0.821794i $$-0.307026\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ −6.00000 −0.234261
$$657$$ 0 0
$$658$$ 12.0000i 0.467809i
$$659$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$660$$ 0 0
$$661$$ 26.0000 1.01128 0.505641 0.862744i $$-0.331256\pi$$
0.505641 + 0.862744i $$0.331256\pi$$
$$662$$ 4.00000i 0.155464i
$$663$$ 0 0
$$664$$ −12.0000 −0.465690
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 12.0000i 0.464294i
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ − 50.0000i − 1.92736i −0.267063 0.963679i $$-0.586053\pi$$
0.267063 0.963679i $$-0.413947\pi$$
$$674$$ −22.0000 −0.847408
$$675$$ 0 0
$$676$$ −9.00000 −0.346154
$$677$$ 30.0000i 1.15299i 0.817099 + 0.576497i $$0.195581\pi$$
−0.817099 + 0.576497i $$0.804419\pi$$
$$678$$ 0 0
$$679$$ −14.0000 −0.537271
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 36.0000i 1.37750i 0.724998 + 0.688751i $$0.241841\pi$$
−0.724998 + 0.688751i $$0.758159\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ −1.00000 −0.0381802
$$687$$ 0 0
$$688$$ − 8.00000i − 0.304997i
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 20.0000 0.760836 0.380418 0.924815i $$-0.375780\pi$$
0.380418 + 0.924815i $$0.375780\pi$$
$$692$$ 6.00000i 0.228086i
$$693$$ 0 0
$$694$$ −12.0000 −0.455514
$$695$$ 0 0
$$696$$ 0 0
$$697$$ − 36.0000i − 1.36360i
$$698$$ 26.0000i 0.984115i
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 6.00000 0.226617 0.113308 0.993560i $$-0.463855\pi$$
0.113308 + 0.993560i $$0.463855\pi$$
$$702$$ 0 0
$$703$$ 8.00000i 0.301726i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 18.0000 0.677439
$$707$$ 6.00000i 0.225653i
$$708$$ 0 0
$$709$$ −14.0000 −0.525781 −0.262891 0.964826i $$-0.584676\pi$$
−0.262891 + 0.964826i $$0.584676\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 6.00000i 0.224860i
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ −16.0000 −0.595871
$$722$$ 3.00000i 0.111648i
$$723$$ 0 0
$$724$$ −2.00000 −0.0743294
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 8.00000i 0.296704i 0.988935 + 0.148352i $$0.0473968\pi$$
−0.988935 + 0.148352i $$0.952603\pi$$
$$728$$ 2.00000i 0.0741249i
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 48.0000 1.77534
$$732$$ 0 0
$$733$$ − 2.00000i − 0.0738717i −0.999318 0.0369358i $$-0.988240\pi$$
0.999318 0.0369358i $$-0.0117597\pi$$
$$734$$ 8.00000 0.295285
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ −44.0000 −1.61857 −0.809283 0.587419i $$-0.800144\pi$$
−0.809283 + 0.587419i $$0.800144\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 6.00000i 0.220267i
$$743$$ − 24.0000i − 0.880475i −0.897881 0.440237i $$-0.854894\pi$$
0.897881 0.440237i $$-0.145106\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ −26.0000 −0.951928
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 12.0000 0.438470
$$750$$ 0 0
$$751$$ −40.0000 −1.45962 −0.729810 0.683650i $$-0.760392\pi$$
−0.729810 + 0.683650i $$0.760392\pi$$
$$752$$ 12.0000i 0.437595i
$$753$$ 0 0
$$754$$ 12.0000 0.437014
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 22.0000i − 0.799604i −0.916602 0.399802i $$-0.869079\pi$$
0.916602 0.399802i $$-0.130921\pi$$
$$758$$ 20.0000i 0.726433i
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −30.0000 −1.08750 −0.543750 0.839248i $$-0.682996\pi$$
−0.543750 + 0.839248i $$0.682996\pi$$
$$762$$ 0 0
$$763$$ − 14.0000i − 0.506834i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ −36.0000 −1.30073
$$767$$ 24.0000i 0.866590i
$$768$$ 0 0
$$769$$ −50.0000 −1.80305 −0.901523 0.432731i $$-0.857550\pi$$
−0.901523 + 0.432731i $$0.857550\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ − 22.0000i − 0.791797i
$$773$$ − 6.00000i − 0.215805i −0.994161 0.107903i $$-0.965587\pi$$
0.994161 0.107903i $$-0.0344134\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ −14.0000 −0.502571
$$777$$ 0 0
$$778$$ 30.0000i 1.07555i
$$779$$ −24.0000 −0.859889
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ −1.00000 −0.0357143
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 28.0000i − 0.998092i −0.866575 0.499046i $$-0.833684\pi$$
0.866575 0.499046i $$-0.166316\pi$$
$$788$$ − 18.0000i − 0.641223i
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −18.0000 −0.640006
$$792$$ 0 0
$$793$$ − 4.00000i − 0.142044i
$$794$$ 2.00000 0.0709773
$$795$$ 0 0
$$796$$ −4.00000 −0.141776
$$797$$ 6.00000i 0.212531i 0.994338 + 0.106265i $$0.0338893\pi$$
−0.994338 + 0.106265i $$0.966111\pi$$
$$798$$ 0 0
$$799$$ −72.0000 −2.54718
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 18.0000i 0.635602i
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 8.00000 0.281788
$$807$$ 0 0
$$808$$ 6.00000i 0.211079i
$$809$$ −30.0000 −1.05474 −0.527372 0.849635i $$-0.676823\pi$$
−0.527372 + 0.849635i $$0.676823\pi$$
$$810$$ 0 0
$$811$$ −4.00000 −0.140459 −0.0702295 0.997531i $$-0.522373\pi$$
−0.0702295 + 0.997531i $$0.522373\pi$$
$$812$$ 6.00000i 0.210559i
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ − 32.0000i − 1.11954i
$$818$$ − 22.0000i − 0.769212i
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 30.0000 1.04701 0.523504 0.852023i $$-0.324625\pi$$
0.523504 + 0.852023i $$0.324625\pi$$
$$822$$ 0 0
$$823$$ − 8.00000i − 0.278862i −0.990232 0.139431i $$-0.955473\pi$$
0.990232 0.139431i $$-0.0445274\pi$$
$$824$$ −16.0000 −0.557386
$$825$$ 0 0
$$826$$ −12.0000 −0.417533
$$827$$ 12.0000i 0.417281i 0.977992 + 0.208640i $$0.0669038\pi$$
−0.977992 + 0.208640i $$0.933096\pi$$
$$828$$ 0 0
$$829$$ 46.0000 1.59765 0.798823 0.601566i $$-0.205456\pi$$
0.798823 + 0.601566i $$0.205456\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 2.00000i 0.0693375i
$$833$$ − 6.00000i − 0.207888i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 12.0000i 0.414533i
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 10.0000i 0.344623i
$$843$$ 0 0
$$844$$ 28.0000 0.963800
$$845$$ 0 0
$$846$$ 0 0
$$847$$ − 11.0000i − 0.377964i
$$848$$ 6.00000i 0.206041i
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ − 26.0000i − 0.890223i −0.895475 0.445112i $$-0.853164\pi$$
0.895475 0.445112i $$-0.146836\pi$$
$$854$$ 2.00000 0.0684386
$$855$$ 0 0
$$856$$ 12.0000 0.410152
$$857$$ − 18.0000i − 0.614868i −0.951569 0.307434i $$-0.900530\pi$$
0.951569 0.307434i $$-0.0994704\pi$$
$$858$$ 0 0
$$859$$ 4.00000 0.136478 0.0682391 0.997669i $$-0.478262\pi$$
0.0682391 + 0.997669i $$0.478262\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 24.0000i 0.817443i
$$863$$ − 48.0000i − 1.63394i −0.576681 0.816970i $$-0.695652\pi$$
0.576681 0.816970i $$-0.304348\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 34.0000 1.15537
$$867$$ 0 0
$$868$$ 4.00000i 0.135769i
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 16.0000 0.542139
$$872$$ − 14.0000i − 0.474100i
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 50.0000i 1.68838i 0.536044 + 0.844190i $$0.319918\pi$$
−0.536044 + 0.844190i $$0.680082\pi$$
$$878$$ − 28.0000i − 0.944954i
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 42.0000 1.41502 0.707508 0.706705i $$-0.249819\pi$$
0.707508 + 0.706705i $$0.249819\pi$$
$$882$$ 0 0
$$883$$ 40.0000i 1.34611i 0.739594 + 0.673054i $$0.235018\pi$$
−0.739594 + 0.673054i $$0.764982\pi$$
$$884$$ −12.0000 −0.403604
$$885$$ 0 0
$$886$$ 12.0000 0.403148
$$887$$ 12.0000i 0.402921i 0.979497 + 0.201460i $$0.0645687\pi$$
−0.979497 + 0.201460i $$0.935431\pi$$
$$888$$ 0 0
$$889$$ −8.00000 −0.268311
$$890$$ 0 0
$$891$$ 0 0
$$892$$ − 16.0000i − 0.535720i
$$893$$ 48.0000i 1.60626i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ −1.00000 −0.0334077
$$897$$ 0 0
$$898$$ 6.00000i 0.200223i
$$899$$ 24.0000 0.800445
$$900$$ 0 0
$$901$$ −36.0000 −1.19933
$$902$$ 0 0
$$903$$ 0 0
$$904$$ −18.0000 −0.598671
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 16.0000i − 0.531271i −0.964073 0.265636i $$-0.914418\pi$$
0.964073 0.265636i $$-0.0855818\pi$$
$$908$$ − 12.0000i − 0.398234i
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 2.00000 0.0661541
$$915$$ 0 0
$$916$$ 2.00000 0.0660819
$$917$$ − 12.0000i − 0.396275i
$$918$$ 0 0
$$919$$ 16.0000 0.527791 0.263896 0.964551i $$-0.414993\pi$$
0.263896 + 0.964551i $$0.414993\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ − 30.0000i − 0.987997i
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 16.0000 0.525793
$$927$$ 0 0
$$928$$ 6.00000i 0.196960i
$$929$$ 54.0000 1.77168 0.885841 0.463988i $$-0.153582\pi$$
0.885841 + 0.463988i $$0.153582\pi$$
$$930$$ 0 0
$$931$$ −4.00000 −0.131095
$$932$$ 6.00000i 0.196537i
$$933$$ 0 0
$$934$$ −12.0000 −0.392652
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 34.0000i − 1.11073i −0.831606 0.555366i $$-0.812578\pi$$
0.831606 0.555366i $$-0.187422\pi$$
$$938$$ 8.00000i 0.261209i
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −18.0000 −0.586783 −0.293392 0.955992i $$-0.594784\pi$$
−0.293392 + 0.955992i $$0.594784\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ −12.0000 −0.390567
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 36.0000i 1.16984i 0.811090 + 0.584921i $$0.198875\pi$$
−0.811090 + 0.584921i $$0.801125\pi$$
$$948$$ 0 0
$$949$$ −28.0000 −0.908918
$$950$$ 0 0
$$951$$ 0 0
$$952$$ − 6.00000i − 0.194461i
$$953$$ − 6.00000i − 0.194359i −0.995267 0.0971795i $$-0.969018\pi$$
0.995267 0.0971795i $$-0.0309821\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 24.0000i 0.775405i
$$959$$ −6.00000 −0.193750
$$960$$ 0 0
$$961$$ −15.0000 −0.483871
$$962$$ − 4.00000i − 0.128965i
$$963$$ 0 0
$$964$$ −26.0000 −0.837404
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 56.0000i 1.80084i 0.435023 + 0.900419i $$0.356740\pi$$
−0.435023 + 0.900419i $$0.643260\pi$$
$$968$$ − 11.0000i − 0.353553i
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −12.0000 −0.385098 −0.192549 0.981287i $$-0.561675\pi$$
−0.192549 + 0.981287i $$0.561675\pi$$
$$972$$ 0 0
$$973$$ 4.00000i 0.128234i
$$974$$ −16.0000 −0.512673
$$975$$ 0 0
$$976$$ 2.00000 0.0640184
$$977$$ − 18.0000i − 0.575871i −0.957650 0.287936i $$-0.907031\pi$$
0.957650 0.287936i $$-0.0929689\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 24.0000i 0.765871i
$$983$$ − 36.0000i − 1.14822i −0.818778 0.574111i $$-0.805348\pi$$
0.818778 0.574111i $$-0.194652\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ −36.0000 −1.14647
$$987$$ 0 0
$$988$$ 8.00000i 0.254514i
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 56.0000 1.77890 0.889449 0.457034i $$-0.151088\pi$$
0.889449 + 0.457034i $$0.151088\pi$$
$$992$$ 4.00000i 0.127000i
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 26.0000i 0.823428i 0.911313 + 0.411714i $$0.135070\pi$$
−0.911313 + 0.411714i $$0.864930\pi$$
$$998$$ − 4.00000i − 0.126618i
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.g.o.2899.1 2
3.2 odd 2 1050.2.g.h.799.2 2
5.2 odd 4 3150.2.a.ba.1.1 1
5.3 odd 4 630.2.a.f.1.1 1
5.4 even 2 inner 3150.2.g.o.2899.2 2
15.2 even 4 1050.2.a.a.1.1 1
15.8 even 4 210.2.a.d.1.1 1
15.14 odd 2 1050.2.g.h.799.1 2
20.3 even 4 5040.2.a.ba.1.1 1
35.13 even 4 4410.2.a.f.1.1 1
60.23 odd 4 1680.2.a.b.1.1 1
60.47 odd 4 8400.2.a.cn.1.1 1
105.23 even 12 1470.2.i.d.361.1 2
105.38 odd 12 1470.2.i.h.961.1 2
105.53 even 12 1470.2.i.d.961.1 2
105.62 odd 4 7350.2.a.bd.1.1 1
105.68 odd 12 1470.2.i.h.361.1 2
105.83 odd 4 1470.2.a.m.1.1 1
120.53 even 4 6720.2.a.bb.1.1 1
120.83 odd 4 6720.2.a.cc.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.a.d.1.1 1 15.8 even 4
630.2.a.f.1.1 1 5.3 odd 4
1050.2.a.a.1.1 1 15.2 even 4
1050.2.g.h.799.1 2 15.14 odd 2
1050.2.g.h.799.2 2 3.2 odd 2
1470.2.a.m.1.1 1 105.83 odd 4
1470.2.i.d.361.1 2 105.23 even 12
1470.2.i.d.961.1 2 105.53 even 12
1470.2.i.h.361.1 2 105.68 odd 12
1470.2.i.h.961.1 2 105.38 odd 12
1680.2.a.b.1.1 1 60.23 odd 4
3150.2.a.ba.1.1 1 5.2 odd 4
3150.2.g.o.2899.1 2 1.1 even 1 trivial
3150.2.g.o.2899.2 2 5.4 even 2 inner
4410.2.a.f.1.1 1 35.13 even 4
5040.2.a.ba.1.1 1 20.3 even 4
6720.2.a.bb.1.1 1 120.53 even 4
6720.2.a.cc.1.1 1 120.83 odd 4
7350.2.a.bd.1.1 1 105.62 odd 4
8400.2.a.cn.1.1 1 60.47 odd 4