Properties

Label 3150.2.g.n
Level 3150
Weight 2
Character orbit 3150.g
Analytic conductor 25.153
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} -i q^{7} -i q^{8} +O(q^{10})\) \( q + i q^{2} - q^{4} -i q^{7} -i q^{8} -i q^{13} + q^{14} + q^{16} + 3 i q^{17} -2 q^{19} -3 i q^{23} + q^{26} + i q^{28} + 3 q^{29} - q^{31} + i q^{32} -3 q^{34} -2 i q^{37} -2 i q^{38} + 3 q^{41} -7 i q^{43} + 3 q^{46} + 6 i q^{47} - q^{49} + i q^{52} -9 i q^{53} - q^{56} + 3 i q^{58} + 3 q^{59} - q^{61} -i q^{62} - q^{64} -8 i q^{67} -3 i q^{68} -4 i q^{73} + 2 q^{74} + 2 q^{76} -8 q^{79} + 3 i q^{82} -15 i q^{83} + 7 q^{86} + 6 q^{89} - q^{91} + 3 i q^{92} -6 q^{94} -8 i q^{97} -i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} + 2q^{14} + 2q^{16} - 4q^{19} + 2q^{26} + 6q^{29} - 2q^{31} - 6q^{34} + 6q^{41} + 6q^{46} - 2q^{49} - 2q^{56} + 6q^{59} - 2q^{61} - 2q^{64} + 4q^{74} + 4q^{76} - 16q^{79} + 14q^{86} + 12q^{89} - 2q^{91} - 12q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2899.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
2899.2 1.00000i 0 −1.00000 0 0 1.00000i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.g.n 2
3.b odd 2 1 3150.2.g.k 2
5.b even 2 1 inner 3150.2.g.n 2
5.c odd 4 1 3150.2.a.o yes 1
5.c odd 4 1 3150.2.a.bc yes 1
15.d odd 2 1 3150.2.g.k 2
15.e even 4 1 3150.2.a.h 1
15.e even 4 1 3150.2.a.bm yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3150.2.a.h 1 15.e even 4 1
3150.2.a.o yes 1 5.c odd 4 1
3150.2.a.bc yes 1 5.c odd 4 1
3150.2.a.bm yes 1 15.e even 4 1
3150.2.g.k 2 3.b odd 2 1
3150.2.g.k 2 15.d odd 2 1
3150.2.g.n 2 1.a even 1 1 trivial
3150.2.g.n 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):

\( T_{11} \)
\( T_{13}^{2} + 1 \)
\( T_{17}^{2} + 9 \)
\( T_{19} + 2 \)
\( T_{29} - 3 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ 1
$5$ 1
$7$ \( 1 + T^{2} \)
$11$ \( ( 1 + 11 T^{2} )^{2} \)
$13$ \( 1 - 25 T^{2} + 169 T^{4} \)
$17$ \( 1 - 25 T^{2} + 289 T^{4} \)
$19$ \( ( 1 + 2 T + 19 T^{2} )^{2} \)
$23$ \( 1 - 37 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 3 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 + T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} ) \)
$41$ \( ( 1 - 3 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 37 T^{2} + 1849 T^{4} \)
$47$ \( 1 - 58 T^{2} + 2209 T^{4} \)
$53$ \( 1 - 25 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 - 3 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 + T + 61 T^{2} )^{2} \)
$67$ \( 1 - 70 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( 1 - 130 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 8 T + 79 T^{2} )^{2} \)
$83$ \( 1 + 59 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 - 6 T + 89 T^{2} )^{2} \)
$97$ \( ( 1 - 18 T + 97 T^{2} )( 1 + 18 T + 97 T^{2} ) \)
show more
show less