Properties

Label 3150.2.g.a.2899.2
Level 3150
Weight 2
Character 3150.2899
Analytic conductor 25.153
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1050)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2899.2
Root \(-1.00000i\)
Character \(\chi\) = 3150.2899
Dual form 3150.2.g.a.2899.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} -1.00000i q^{8} -6.00000 q^{11} +1.00000i q^{13} -1.00000 q^{14} +1.00000 q^{16} -3.00000i q^{17} +4.00000 q^{19} -6.00000i q^{22} -3.00000i q^{23} -1.00000 q^{26} -1.00000i q^{28} +3.00000 q^{29} +5.00000 q^{31} +1.00000i q^{32} +3.00000 q^{34} -10.0000i q^{37} +4.00000i q^{38} -9.00000 q^{41} +1.00000i q^{43} +6.00000 q^{44} +3.00000 q^{46} -1.00000 q^{49} -1.00000i q^{52} +9.00000i q^{53} +1.00000 q^{56} +3.00000i q^{58} +9.00000 q^{59} +11.0000 q^{61} +5.00000i q^{62} -1.00000 q^{64} -4.00000i q^{67} +3.00000i q^{68} +12.0000 q^{71} +10.0000i q^{73} +10.0000 q^{74} -4.00000 q^{76} -6.00000i q^{77} +10.0000 q^{79} -9.00000i q^{82} +9.00000i q^{83} -1.00000 q^{86} +6.00000i q^{88} -6.00000 q^{89} -1.00000 q^{91} +3.00000i q^{92} +14.0000i q^{97} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} - 12q^{11} - 2q^{14} + 2q^{16} + 8q^{19} - 2q^{26} + 6q^{29} + 10q^{31} + 6q^{34} - 18q^{41} + 12q^{44} + 6q^{46} - 2q^{49} + 2q^{56} + 18q^{59} + 22q^{61} - 2q^{64} + 24q^{71} + 20q^{74} - 8q^{76} + 20q^{79} - 2q^{86} - 12q^{89} - 2q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 3.00000i − 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 6.00000i − 1.27920i
\(23\) − 3.00000i − 0.625543i −0.949828 0.312772i \(-0.898743\pi\)
0.949828 0.312772i \(-0.101257\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) − 1.00000i − 0.188982i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.0000i − 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) − 1.00000i − 0.138675i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 3.00000i 0.393919i
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) 11.0000 1.40841 0.704203 0.709999i \(-0.251305\pi\)
0.704203 + 0.709999i \(0.251305\pi\)
\(62\) 5.00000i 0.635001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 3.00000i 0.363803i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 9.00000i − 0.993884i
\(83\) 9.00000i 0.987878i 0.869496 + 0.493939i \(0.164443\pi\)
−0.869496 + 0.493939i \(0.835557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.00000 −0.107833
\(87\) 0 0
\(88\) 6.00000i 0.639602i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 3.00000i 0.312772i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) − 17.0000i − 1.67506i −0.546392 0.837530i \(-0.683999\pi\)
0.546392 0.837530i \(-0.316001\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −9.00000 −0.874157
\(107\) − 18.0000i − 1.74013i −0.492941 0.870063i \(-0.664078\pi\)
0.492941 0.870063i \(-0.335922\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) 9.00000i 0.828517i
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 11.0000i 0.995893i
\(123\) 0 0
\(124\) −5.00000 −0.449013
\(125\) 0 0
\(126\) 0 0
\(127\) − 10.0000i − 0.887357i −0.896186 0.443678i \(-0.853673\pi\)
0.896186 0.443678i \(-0.146327\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000i 0.346844i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000i 1.00702i
\(143\) − 6.00000i − 0.501745i
\(144\) 0 0
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 10.0000i 0.821995i
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) − 4.00000i − 0.324443i
\(153\) 0 0
\(154\) 6.00000 0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) − 10.0000i − 0.798087i −0.916932 0.399043i \(-0.869342\pi\)
0.916932 0.399043i \(-0.130658\pi\)
\(158\) 10.0000i 0.795557i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) − 5.00000i − 0.391630i −0.980641 0.195815i \(-0.937265\pi\)
0.980641 0.195815i \(-0.0627352\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) −9.00000 −0.698535
\(167\) − 18.0000i − 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) − 1.00000i − 0.0762493i
\(173\) − 12.0000i − 0.912343i −0.889892 0.456172i \(-0.849220\pi\)
0.889892 0.456172i \(-0.150780\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −6.00000 −0.452267
\(177\) 0 0
\(178\) − 6.00000i − 0.449719i
\(179\) 18.0000 1.34538 0.672692 0.739923i \(-0.265138\pi\)
0.672692 + 0.739923i \(0.265138\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) − 1.00000i − 0.0741249i
\(183\) 0 0
\(184\) −3.00000 −0.221163
\(185\) 0 0
\(186\) 0 0
\(187\) 18.0000i 1.31629i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) 22.0000i 1.58359i 0.610784 + 0.791797i \(0.290854\pi\)
−0.610784 + 0.791797i \(0.709146\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 15.0000i 1.06871i 0.845262 + 0.534353i \(0.179445\pi\)
−0.845262 + 0.534353i \(0.820555\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.0000i 0.844317i
\(203\) 3.00000i 0.210559i
\(204\) 0 0
\(205\) 0 0
\(206\) 17.0000 1.18445
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) − 9.00000i − 0.618123i
\(213\) 0 0
\(214\) 18.0000 1.23045
\(215\) 0 0
\(216\) 0 0
\(217\) 5.00000i 0.339422i
\(218\) − 8.00000i − 0.541828i
\(219\) 0 0
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) 19.0000i 1.27233i 0.771551 + 0.636167i \(0.219481\pi\)
−0.771551 + 0.636167i \(0.780519\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) − 3.00000i − 0.199117i −0.995032 0.0995585i \(-0.968257\pi\)
0.995032 0.0995585i \(-0.0317430\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 3.00000i − 0.196960i
\(233\) 12.0000i 0.786146i 0.919507 + 0.393073i \(0.128588\pi\)
−0.919507 + 0.393073i \(0.871412\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −9.00000 −0.585850
\(237\) 0 0
\(238\) 3.00000i 0.194461i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 25.0000i 1.60706i
\(243\) 0 0
\(244\) −11.0000 −0.704203
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000i 0.254514i
\(248\) − 5.00000i − 0.317500i
\(249\) 0 0
\(250\) 0 0
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 0 0
\(253\) 18.0000i 1.13165i
\(254\) 10.0000 0.627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 15.0000i − 0.935674i −0.883815 0.467837i \(-0.845033\pi\)
0.883815 0.467837i \(-0.154967\pi\)
\(258\) 0 0
\(259\) 10.0000 0.621370
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.00000i 0.554964i 0.960731 + 0.277482i \(0.0894999\pi\)
−0.960731 + 0.277482i \(0.910500\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) − 3.00000i − 0.181902i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) − 9.00000i − 0.531253i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) − 10.0000i − 0.585206i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.0000 −0.581238
\(297\) 0 0
\(298\) − 9.00000i − 0.521356i
\(299\) 3.00000 0.173494
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) 2.00000i 0.115087i
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 6.00000i 0.341882i
\(309\) 0 0
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 27.0000i 1.51647i 0.651981 + 0.758236i \(0.273938\pi\)
−0.651981 + 0.758236i \(0.726062\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) 3.00000i 0.167183i
\(323\) − 12.0000i − 0.667698i
\(324\) 0 0
\(325\) 0 0
\(326\) 5.00000 0.276924
\(327\) 0 0
\(328\) 9.00000i 0.496942i
\(329\) 0 0
\(330\) 0 0
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) − 9.00000i − 0.493939i
\(333\) 0 0
\(334\) 18.0000 0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) − 13.0000i − 0.708155i −0.935216 0.354078i \(-0.884795\pi\)
0.935216 0.354078i \(-0.115205\pi\)
\(338\) 12.0000i 0.652714i
\(339\) 0 0
\(340\) 0 0
\(341\) −30.0000 −1.62459
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 1.00000 0.0539164
\(345\) 0 0
\(346\) 12.0000 0.645124
\(347\) − 18.0000i − 0.966291i −0.875540 0.483145i \(-0.839494\pi\)
0.875540 0.483145i \(-0.160506\pi\)
\(348\) 0 0
\(349\) −17.0000 −0.909989 −0.454995 0.890494i \(-0.650359\pi\)
−0.454995 + 0.890494i \(0.650359\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 6.00000i − 0.319801i
\(353\) − 30.0000i − 1.59674i −0.602168 0.798369i \(-0.705696\pi\)
0.602168 0.798369i \(-0.294304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 18.0000i 0.951330i
\(359\) −3.00000 −0.158334 −0.0791670 0.996861i \(-0.525226\pi\)
−0.0791670 + 0.996861i \(0.525226\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 2.00000i 0.105118i
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) 0 0
\(366\) 0 0
\(367\) − 37.0000i − 1.93138i −0.259690 0.965692i \(-0.583620\pi\)
0.259690 0.965692i \(-0.416380\pi\)
\(368\) − 3.00000i − 0.156386i
\(369\) 0 0
\(370\) 0 0
\(371\) −9.00000 −0.467257
\(372\) 0 0
\(373\) − 8.00000i − 0.414224i −0.978317 0.207112i \(-0.933593\pi\)
0.978317 0.207112i \(-0.0664065\pi\)
\(374\) −18.0000 −0.930758
\(375\) 0 0
\(376\) 0 0
\(377\) 3.00000i 0.154508i
\(378\) 0 0
\(379\) −35.0000 −1.79783 −0.898915 0.438124i \(-0.855643\pi\)
−0.898915 + 0.438124i \(0.855643\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 15.0000i 0.767467i
\(383\) − 24.0000i − 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) 0 0
\(388\) − 14.0000i − 0.710742i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) −15.0000 −0.755689
\(395\) 0 0
\(396\) 0 0
\(397\) 29.0000i 1.45547i 0.685859 + 0.727734i \(0.259427\pi\)
−0.685859 + 0.727734i \(0.740573\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) 5.00000i 0.249068i
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) −3.00000 −0.148888
\(407\) 60.0000i 2.97409i
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 17.0000i 0.837530i
\(413\) 9.00000i 0.442861i
\(414\) 0 0
\(415\) 0 0
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) − 24.0000i − 1.17388i
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) − 25.0000i − 1.21698i
\(423\) 0 0
\(424\) 9.00000 0.437079
\(425\) 0 0
\(426\) 0 0
\(427\) 11.0000i 0.532327i
\(428\) 18.0000i 0.870063i
\(429\) 0 0
\(430\) 0 0
\(431\) 15.0000 0.722525 0.361262 0.932464i \(-0.382346\pi\)
0.361262 + 0.932464i \(0.382346\pi\)
\(432\) 0 0
\(433\) − 38.0000i − 1.82616i −0.407777 0.913082i \(-0.633696\pi\)
0.407777 0.913082i \(-0.366304\pi\)
\(434\) −5.00000 −0.240008
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) − 12.0000i − 0.574038i
\(438\) 0 0
\(439\) −41.0000 −1.95682 −0.978412 0.206666i \(-0.933739\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3.00000i 0.142695i
\(443\) 24.0000i 1.14027i 0.821549 + 0.570137i \(0.193110\pi\)
−0.821549 + 0.570137i \(0.806890\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −19.0000 −0.899676
\(447\) 0 0
\(448\) − 1.00000i − 0.0472456i
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) 54.0000 2.54276
\(452\) 6.00000i 0.282216i
\(453\) 0 0
\(454\) 3.00000 0.140797
\(455\) 0 0
\(456\) 0 0
\(457\) − 25.0000i − 1.16945i −0.811231 0.584725i \(-0.801202\pi\)
0.811231 0.584725i \(-0.198798\pi\)
\(458\) 22.0000i 1.02799i
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) − 32.0000i − 1.48717i −0.668644 0.743583i \(-0.733125\pi\)
0.668644 0.743583i \(-0.266875\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) −12.0000 −0.555889
\(467\) 3.00000i 0.138823i 0.997588 + 0.0694117i \(0.0221122\pi\)
−0.997588 + 0.0694117i \(0.977888\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) − 9.00000i − 0.414259i
\(473\) − 6.00000i − 0.275880i
\(474\) 0 0
\(475\) 0 0
\(476\) −3.00000 −0.137505
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 2.00000i 0.0910975i
\(483\) 0 0
\(484\) −25.0000 −1.13636
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) − 11.0000i − 0.497947i
\(489\) 0 0
\(490\) 0 0
\(491\) −42.0000 −1.89543 −0.947717 0.319113i \(-0.896615\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) − 9.00000i − 0.405340i
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) 5.00000 0.224507
\(497\) 12.0000i 0.538274i
\(498\) 0 0
\(499\) 19.0000 0.850557 0.425278 0.905063i \(-0.360176\pi\)
0.425278 + 0.905063i \(0.360176\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 27.0000i 1.20507i
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −18.0000 −0.800198
\(507\) 0 0
\(508\) 10.0000i 0.443678i
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 15.0000 0.661622
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 10.0000i 0.439375i
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) − 15.0000i − 0.653410i
\(528\) 0 0
\(529\) 14.0000 0.608696
\(530\) 0 0
\(531\) 0 0
\(532\) − 4.00000i − 0.173422i
\(533\) − 9.00000i − 0.389833i
\(534\) 0 0
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) − 18.0000i − 0.776035i
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 20.0000i 0.859074i
\(543\) 0 0
\(544\) 3.00000 0.128624
\(545\) 0 0
\(546\) 0 0
\(547\) 17.0000i 0.726868i 0.931620 + 0.363434i \(0.118396\pi\)
−0.931620 + 0.363434i \(0.881604\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 10.0000i 0.425243i
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 24.0000i 1.01238i
\(563\) 21.0000i 0.885044i 0.896758 + 0.442522i \(0.145916\pi\)
−0.896758 + 0.442522i \(0.854084\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) − 12.0000i − 0.503509i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −13.0000 −0.544033 −0.272017 0.962293i \(-0.587691\pi\)
−0.272017 + 0.962293i \(0.587691\pi\)
\(572\) 6.00000i 0.250873i
\(573\) 0 0
\(574\) 9.00000 0.375653
\(575\) 0 0
\(576\) 0 0
\(577\) − 34.0000i − 1.41544i −0.706494 0.707719i \(-0.749724\pi\)
0.706494 0.707719i \(-0.250276\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 0 0
\(580\) 0 0
\(581\) −9.00000 −0.373383
\(582\) 0 0
\(583\) − 54.0000i − 2.23645i
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 0 0
\(587\) − 33.0000i − 1.36206i −0.732257 0.681028i \(-0.761533\pi\)
0.732257 0.681028i \(-0.238467\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) 0 0
\(591\) 0 0
\(592\) − 10.0000i − 0.410997i
\(593\) − 18.0000i − 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.00000 0.368654
\(597\) 0 0
\(598\) 3.00000i 0.122679i
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) −4.00000 −0.163163 −0.0815817 0.996667i \(-0.525997\pi\)
−0.0815817 + 0.996667i \(0.525997\pi\)
\(602\) − 1.00000i − 0.0407570i
\(603\) 0 0
\(604\) −2.00000 −0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) − 28.0000i − 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) −6.00000 −0.241747
\(617\) 18.0000i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 18.0000i 0.721734i
\(623\) − 6.00000i − 0.240385i
\(624\) 0 0
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 10.0000i 0.399043i
\(629\) −30.0000 −1.19618
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) − 10.0000i − 0.397779i
\(633\) 0 0
\(634\) −27.0000 −1.07231
\(635\) 0 0
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) − 18.0000i − 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) − 14.0000i − 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) −3.00000 −0.118217
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) − 6.00000i − 0.235884i −0.993020 0.117942i \(-0.962370\pi\)
0.993020 0.117942i \(-0.0376297\pi\)
\(648\) 0 0
\(649\) −54.0000 −2.11969
\(650\) 0 0
\(651\) 0 0
\(652\) 5.00000i 0.195815i
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) 0 0
\(658\) 0 0
\(659\) 42.0000 1.63609 0.818044 0.575156i \(-0.195059\pi\)
0.818044 + 0.575156i \(0.195059\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) − 19.0000i − 0.738456i
\(663\) 0 0
\(664\) 9.00000 0.349268
\(665\) 0 0
\(666\) 0 0
\(667\) − 9.00000i − 0.348481i
\(668\) 18.0000i 0.696441i
\(669\) 0 0
\(670\) 0 0
\(671\) −66.0000 −2.54790
\(672\) 0 0
\(673\) 37.0000i 1.42625i 0.701039 + 0.713123i \(0.252720\pi\)
−0.701039 + 0.713123i \(0.747280\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) 0 0
\(681\) 0 0
\(682\) − 30.0000i − 1.14876i
\(683\) 18.0000i 0.688751i 0.938832 + 0.344375i \(0.111909\pi\)
−0.938832 + 0.344375i \(0.888091\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 1.00000i 0.0381246i
\(689\) −9.00000 −0.342873
\(690\) 0 0
\(691\) −34.0000 −1.29342 −0.646710 0.762736i \(-0.723856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(692\) 12.0000i 0.456172i
\(693\) 0 0
\(694\) 18.0000 0.683271
\(695\) 0 0
\(696\) 0 0
\(697\) 27.0000i 1.02270i
\(698\) − 17.0000i − 0.643459i
\(699\) 0 0
\(700\) 0 0
\(701\) −3.00000 −0.113308 −0.0566542 0.998394i \(-0.518043\pi\)
−0.0566542 + 0.998394i \(0.518043\pi\)
\(702\) 0 0
\(703\) − 40.0000i − 1.50863i
\(704\) 6.00000 0.226134
\(705\) 0 0
\(706\) 30.0000 1.12906
\(707\) 12.0000i 0.451306i
\(708\) 0 0
\(709\) 40.0000 1.50223 0.751116 0.660171i \(-0.229516\pi\)
0.751116 + 0.660171i \(0.229516\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000i 0.224860i
\(713\) − 15.0000i − 0.561754i
\(714\) 0 0
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) 0 0
\(718\) − 3.00000i − 0.111959i
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 17.0000 0.633113
\(722\) − 3.00000i − 0.111648i
\(723\) 0 0
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) − 7.00000i − 0.259616i −0.991539 0.129808i \(-0.958564\pi\)
0.991539 0.129808i \(-0.0414360\pi\)
\(728\) 1.00000i 0.0370625i
\(729\) 0 0
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) − 29.0000i − 1.07114i −0.844491 0.535570i \(-0.820097\pi\)
0.844491 0.535570i \(-0.179903\pi\)
\(734\) 37.0000 1.36569
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) 37.0000 1.36107 0.680534 0.732717i \(-0.261748\pi\)
0.680534 + 0.732717i \(0.261748\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 9.00000i − 0.330400i
\(743\) − 9.00000i − 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.00000 0.292901
\(747\) 0 0
\(748\) − 18.0000i − 0.658145i
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −3.00000 −0.109254
\(755\) 0 0
\(756\) 0 0
\(757\) 14.0000i 0.508839i 0.967094 + 0.254419i \(0.0818843\pi\)
−0.967094 + 0.254419i \(0.918116\pi\)
\(758\) − 35.0000i − 1.27126i
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) − 8.00000i − 0.289619i
\(764\) −15.0000 −0.542681
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 9.00000i 0.324971i
\(768\) 0 0
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 22.0000i − 0.791797i
\(773\) − 48.0000i − 1.72644i −0.504828 0.863220i \(-0.668444\pi\)
0.504828 0.863220i \(-0.331556\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) − 6.00000i − 0.215110i
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) −72.0000 −2.57636
\(782\) − 9.00000i − 0.321839i
\(783\) 0 0
\(784\) −1.00000 −0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 26.0000i 0.926800i 0.886149 + 0.463400i \(0.153371\pi\)
−0.886149 + 0.463400i \(0.846629\pi\)
\(788\) − 15.0000i − 0.534353i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 11.0000i 0.390621i
\(794\) −29.0000 −1.02917
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 6.00000i 0.212531i 0.994338 + 0.106265i \(0.0338893\pi\)
−0.994338 + 0.106265i \(0.966111\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 12.0000i 0.423735i
\(803\) − 60.0000i − 2.11735i
\(804\) 0 0
\(805\) 0 0
\(806\) −5.00000 −0.176117
\(807\) 0 0
\(808\) − 12.0000i − 0.422159i
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −34.0000 −1.19390 −0.596951 0.802278i \(-0.703621\pi\)
−0.596951 + 0.802278i \(0.703621\pi\)
\(812\) − 3.00000i − 0.105279i
\(813\) 0 0
\(814\) −60.0000 −2.10300
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000i 0.139942i
\(818\) − 38.0000i − 1.32864i
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) 34.0000i 1.18517i 0.805510 + 0.592583i \(0.201892\pi\)
−0.805510 + 0.592583i \(0.798108\pi\)
\(824\) −17.0000 −0.592223
\(825\) 0 0
\(826\) −9.00000 −0.313150
\(827\) − 6.00000i − 0.208640i −0.994544 0.104320i \(-0.966733\pi\)
0.994544 0.104320i \(-0.0332667\pi\)
\(828\) 0 0
\(829\) −29.0000 −1.00721 −0.503606 0.863934i \(-0.667994\pi\)
−0.503606 + 0.863934i \(0.667994\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1.00000i − 0.0346688i
\(833\) 3.00000i 0.103944i
\(834\) 0 0
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) − 21.0000i − 0.725433i
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) − 34.0000i − 1.17172i
\(843\) 0 0
\(844\) 25.0000 0.860535
\(845\) 0 0
\(846\) 0 0
\(847\) 25.0000i 0.859010i
\(848\) 9.00000i 0.309061i
\(849\) 0 0
\(850\) 0 0
\(851\) −30.0000 −1.02839
\(852\) 0 0
\(853\) 19.0000i 0.650548i 0.945620 + 0.325274i \(0.105456\pi\)
−0.945620 + 0.325274i \(0.894544\pi\)
\(854\) −11.0000 −0.376412
\(855\) 0 0
\(856\) −18.0000 −0.615227
\(857\) − 18.0000i − 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 15.0000i 0.510902i
\(863\) − 48.0000i − 1.63394i −0.576681 0.816970i \(-0.695652\pi\)
0.576681 0.816970i \(-0.304348\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 38.0000 1.29129
\(867\) 0 0
\(868\) − 5.00000i − 0.169711i
\(869\) −60.0000 −2.03536
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 8.00000i 0.270914i
\(873\) 0 0
\(874\) 12.0000 0.405906
\(875\) 0 0
\(876\) 0 0
\(877\) 32.0000i 1.08056i 0.841484 + 0.540282i \(0.181682\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(878\) − 41.0000i − 1.38368i
\(879\) 0 0
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) − 5.00000i − 0.168263i −0.996455 0.0841317i \(-0.973188\pi\)
0.996455 0.0841317i \(-0.0268116\pi\)
\(884\) −3.00000 −0.100901
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) − 54.0000i − 1.81314i −0.422053 0.906571i \(-0.638690\pi\)
0.422053 0.906571i \(-0.361310\pi\)
\(888\) 0 0
\(889\) 10.0000 0.335389
\(890\) 0 0
\(891\) 0 0
\(892\) − 19.0000i − 0.636167i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 24.0000i 0.800890i
\(899\) 15.0000 0.500278
\(900\) 0 0
\(901\) 27.0000 0.899500
\(902\) 54.0000i 1.79800i
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) 53.0000i 1.75984i 0.475125 + 0.879918i \(0.342403\pi\)
−0.475125 + 0.879918i \(0.657597\pi\)
\(908\) 3.00000i 0.0995585i
\(909\) 0 0
\(910\) 0 0
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) − 54.0000i − 1.78714i
\(914\) 25.0000 0.826927
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) 0 0
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 12.0000i − 0.395199i
\(923\) 12.0000i 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 32.0000 1.05159
\(927\) 0 0
\(928\) 3.00000i 0.0984798i
\(929\) −27.0000 −0.885841 −0.442921 0.896561i \(-0.646058\pi\)
−0.442921 + 0.896561i \(0.646058\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) − 12.0000i − 0.393073i
\(933\) 0 0
\(934\) −3.00000 −0.0981630
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000i 0.0653372i 0.999466 + 0.0326686i \(0.0104006\pi\)
−0.999466 + 0.0326686i \(0.989599\pi\)
\(938\) 4.00000i 0.130605i
\(939\) 0 0
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 0 0
\(943\) 27.0000i 0.879241i
\(944\) 9.00000 0.292925
\(945\) 0 0
\(946\) 6.00000 0.195077
\(947\) 24.0000i 0.779895i 0.920837 + 0.389948i \(0.127507\pi\)
−0.920837 + 0.389948i \(0.872493\pi\)
\(948\) 0 0
\(949\) −10.0000 −0.324614
\(950\) 0 0
\(951\) 0 0
\(952\) − 3.00000i − 0.0972306i
\(953\) 24.0000i 0.777436i 0.921357 + 0.388718i \(0.127082\pi\)
−0.921357 + 0.388718i \(0.872918\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 24.0000i 0.775405i
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 10.0000i 0.322413i
\(963\) 0 0
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) − 28.0000i − 0.900419i −0.892923 0.450210i \(-0.851349\pi\)
0.892923 0.450210i \(-0.148651\pi\)
\(968\) − 25.0000i − 0.803530i
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) 11.0000 0.352101
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) 36.0000 1.15056
\(980\) 0 0
\(981\) 0 0
\(982\) − 42.0000i − 1.34027i
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 9.00000 0.286618
\(987\) 0 0
\(988\) − 4.00000i − 0.127257i
\(989\) 3.00000 0.0953945
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 5.00000i 0.158750i
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) 0 0
\(996\) 0 0
\(997\) 26.0000i 0.823428i 0.911313 + 0.411714i \(0.135070\pi\)
−0.911313 + 0.411714i \(0.864930\pi\)
\(998\) 19.0000i 0.601434i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.g.a.2899.2 2
3.2 odd 2 1050.2.g.e.799.1 2
5.2 odd 4 3150.2.a.a.1.1 1
5.3 odd 4 3150.2.a.bg.1.1 1
5.4 even 2 inner 3150.2.g.a.2899.1 2
15.2 even 4 1050.2.a.l.1.1 yes 1
15.8 even 4 1050.2.a.j.1.1 1
15.14 odd 2 1050.2.g.e.799.2 2
60.23 odd 4 8400.2.a.a.1.1 1
60.47 odd 4 8400.2.a.ci.1.1 1
105.62 odd 4 7350.2.a.cz.1.1 1
105.83 odd 4 7350.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1050.2.a.j.1.1 1 15.8 even 4
1050.2.a.l.1.1 yes 1 15.2 even 4
1050.2.g.e.799.1 2 3.2 odd 2
1050.2.g.e.799.2 2 15.14 odd 2
3150.2.a.a.1.1 1 5.2 odd 4
3150.2.a.bg.1.1 1 5.3 odd 4
3150.2.g.a.2899.1 2 5.4 even 2 inner
3150.2.g.a.2899.2 2 1.1 even 1 trivial
7350.2.a.r.1.1 1 105.83 odd 4
7350.2.a.cz.1.1 1 105.62 odd 4
8400.2.a.a.1.1 1 60.23 odd 4
8400.2.a.ci.1.1 1 60.47 odd 4