Properties

Label 3150.2.eh
Level $3150$
Weight $2$
Character orbit 3150.eh
Rep. character $\chi_{3150}(113,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $2880$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.eh (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 225 \)
Character field: \(\Q(\zeta_{60})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3150, [\chi])\).

Total New Old
Modular forms 11648 2880 8768
Cusp forms 11392 2880 8512
Eisenstein series 256 0 256

Trace form

\( 2880 q + 8 q^{3} - 8 q^{12} + 8 q^{15} - 360 q^{16} - 8 q^{18} - 24 q^{20} - 24 q^{23} + 96 q^{25} - 16 q^{27} - 8 q^{33} - 48 q^{37} + 72 q^{38} - 40 q^{39} + 80 q^{45} + 96 q^{47} + 16 q^{48} - 48 q^{55}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1575, [\chi])\)\(^{\oplus 2}\)