# Properties

 Label 3150.2.ed Level 3150 Weight 2 Character orbit ed Rep. character $$\chi_{3150}(53,\cdot)$$ Character field $$\Q(\zeta_{60})$$ Dimension 1280 Sturm bound 1440

# Related objects

## Defining parameters

 Level: $$N$$ = $$3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 3150.ed (of order $$60$$ and degree $$16$$) Character conductor: $$\operatorname{cond}(\chi)$$ = $$525$$ Character field: $$\Q(\zeta_{60})$$ Sturm bound: $$1440$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(3150, [\chi])$$.

Total New Old
Modular forms 11776 1280 10496
Cusp forms 11264 1280 9984
Eisenstein series 512 0 512

## Trace form

 $$1280q + 8q^{7} + O(q^{10})$$ $$1280q + 8q^{7} + 8q^{10} - 160q^{16} + 112q^{22} - 16q^{25} - 32q^{28} - 16q^{37} - 32q^{43} - 32q^{55} - 8q^{58} - 32q^{67} + 136q^{70} - 64q^{73} - 128q^{82} + 64q^{85} + 24q^{88} + 128q^{97} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(3150, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(3150, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(3150, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(525, [\chi])$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(1050, [\chi])$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(1575, [\chi])$$$$^{\oplus 2}$$

## Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database