Properties

Label 3150.2.dv
Level $3150$
Weight $2$
Character orbit 3150.dv
Rep. character $\chi_{3150}(109,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $800$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.dv (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 175 \)
Character field: \(\Q(\zeta_{30})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3150, [\chi])\).

Total New Old
Modular forms 5888 800 5088
Cusp forms 5632 800 4832
Eisenstein series 256 0 256

Trace form

\( 800 q - 100 q^{4} - 2 q^{5} + 2 q^{10} - 6 q^{11} + 100 q^{16} - 20 q^{17} + 4 q^{19} - 4 q^{20} - 40 q^{22} - 30 q^{23} - 12 q^{25} - 48 q^{26} + 10 q^{28} + 24 q^{29} + 6 q^{31} - 16 q^{34} - 4 q^{35}+ \cdots + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1575, [\chi])\)\(^{\oplus 2}\)