# Properties

 Label 3150.2.d.e Level 3150 Weight 2 Character orbit 3150.d Analytic conductor 25.153 Analytic rank 0 Dimension 8 CM no Inner twists 4

# Related objects

## Newspace parameters

 Level: $$N$$ = $$3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 3150.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$25.1528766367$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: 8.0.40960000.1 Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$2^{6}\cdot 5^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + ( \beta_{1} - \beta_{2} ) q^{7} + q^{8} +O(q^{10})$$ $$q + q^{2} + q^{4} + ( \beta_{1} - \beta_{2} ) q^{7} + q^{8} + \beta_{2} q^{11} + ( \beta_{1} + \beta_{6} ) q^{13} + ( \beta_{1} - \beta_{2} ) q^{14} + q^{16} + \beta_{3} q^{17} + ( 2 \beta_{3} + \beta_{5} ) q^{19} + \beta_{2} q^{22} + q^{23} + ( \beta_{1} + \beta_{6} ) q^{26} + ( \beta_{1} - \beta_{2} ) q^{28} + ( 3 \beta_{2} + \beta_{4} ) q^{29} + ( -\beta_{3} + 2 \beta_{5} ) q^{31} + q^{32} + \beta_{3} q^{34} + 2 \beta_{2} q^{37} + ( 2 \beta_{3} + \beta_{5} ) q^{38} + ( \beta_{1} - 2 \beta_{6} ) q^{41} + ( \beta_{2} + \beta_{4} ) q^{43} + \beta_{2} q^{44} + q^{46} + ( -2 \beta_{3} + \beta_{5} ) q^{47} + ( 3 + 2 \beta_{5} ) q^{49} + ( \beta_{1} + \beta_{6} ) q^{52} + ( 1 + \beta_{7} ) q^{53} + ( \beta_{1} - \beta_{2} ) q^{56} + ( 3 \beta_{2} + \beta_{4} ) q^{58} + ( \beta_{1} + 3 \beta_{6} ) q^{59} + ( -\beta_{3} + \beta_{5} ) q^{61} + ( -\beta_{3} + 2 \beta_{5} ) q^{62} + q^{64} + \beta_{3} q^{68} + ( 4 \beta_{2} - 2 \beta_{4} ) q^{71} + ( -2 \beta_{1} + 3 \beta_{6} ) q^{73} + 2 \beta_{2} q^{74} + ( 2 \beta_{3} + \beta_{5} ) q^{76} + ( 2 - \beta_{5} ) q^{77} + ( 6 + \beta_{7} ) q^{79} + ( \beta_{1} - 2 \beta_{6} ) q^{82} + ( 5 \beta_{3} + \beta_{5} ) q^{83} + ( \beta_{2} + \beta_{4} ) q^{86} + \beta_{2} q^{88} + ( 4 \beta_{1} + 2 \beta_{6} ) q^{89} + ( 5 - 2 \beta_{3} + \beta_{5} - \beta_{7} ) q^{91} + q^{92} + ( -2 \beta_{3} + \beta_{5} ) q^{94} + ( -4 \beta_{1} - 3 \beta_{6} ) q^{97} + ( 3 + 2 \beta_{5} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 8q^{2} + 8q^{4} + 8q^{8} + O(q^{10})$$ $$8q + 8q^{2} + 8q^{4} + 8q^{8} + 8q^{16} + 8q^{23} + 8q^{32} + 8q^{46} + 24q^{49} + 8q^{53} + 8q^{64} + 16q^{77} + 48q^{79} + 40q^{91} + 8q^{92} + 24q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} + 7 x^{4} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$2 \nu^{4} + 7$$$$)/3$$ $$\beta_{2}$$ $$=$$ $$($$$$-2 \nu^{7} - \nu^{5} - 13 \nu^{3} - 5 \nu$$$$)/3$$ $$\beta_{3}$$ $$=$$ $$-\nu^{6} - 6 \nu^{2}$$ $$\beta_{4}$$ $$=$$ $$($$$$-5 \nu^{6} - 40 \nu^{2}$$$$)/3$$ $$\beta_{5}$$ $$=$$ $$($$$$4 \nu^{7} + \nu^{5} + 29 \nu^{3} + 11 \nu$$$$)/3$$ $$\beta_{6}$$ $$=$$ $$($$$$-4 \nu^{7} + \nu^{5} - 29 \nu^{3} + 11 \nu$$$$)/3$$ $$\beta_{7}$$ $$=$$ $$($$$$10 \nu^{7} - 5 \nu^{5} + 65 \nu^{3} - 25 \nu$$$$)/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{7} + 5 \beta_{6} + 5 \beta_{5} + 5 \beta_{2}$$$$)/20$$ $$\nu^{2}$$ $$=$$ $$($$$$-3 \beta_{4} + 5 \beta_{3}$$$$)/10$$ $$\nu^{3}$$ $$=$$ $$($$$$-2 \beta_{7} - 5 \beta_{6} + 5 \beta_{5} + 10 \beta_{2}$$$$)/10$$ $$\nu^{4}$$ $$=$$ $$($$$$3 \beta_{1} - 7$$$$)/2$$ $$\nu^{5}$$ $$=$$ $$($$$$-11 \beta_{7} - 25 \beta_{6} - 25 \beta_{5} - 55 \beta_{2}$$$$)/20$$ $$\nu^{6}$$ $$=$$ $$($$$$9 \beta_{4} - 20 \beta_{3}$$$$)/5$$ $$\nu^{7}$$ $$=$$ $$($$$$29 \beta_{7} + 65 \beta_{6} - 65 \beta_{5} - 145 \beta_{2}$$$$)/20$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$2801$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3149.1
 −1.14412 + 1.14412i 1.14412 + 1.14412i −1.14412 − 1.14412i 1.14412 − 1.14412i −0.437016 − 0.437016i 0.437016 − 0.437016i −0.437016 + 0.437016i 0.437016 + 0.437016i
1.00000 0 1.00000 0 0 −2.23607 1.41421i 1.00000 0 0
3149.2 1.00000 0 1.00000 0 0 −2.23607 1.41421i 1.00000 0 0
3149.3 1.00000 0 1.00000 0 0 −2.23607 + 1.41421i 1.00000 0 0
3149.4 1.00000 0 1.00000 0 0 −2.23607 + 1.41421i 1.00000 0 0
3149.5 1.00000 0 1.00000 0 0 2.23607 1.41421i 1.00000 0 0
3149.6 1.00000 0 1.00000 0 0 2.23607 1.41421i 1.00000 0 0
3149.7 1.00000 0 1.00000 0 0 2.23607 + 1.41421i 1.00000 0 0
3149.8 1.00000 0 1.00000 0 0 2.23607 + 1.41421i 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 3149.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
15.d odd 2 1 inner
105.g even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.d.e 8
3.b odd 2 1 3150.2.d.b 8
5.b even 2 1 3150.2.d.b 8
5.c odd 4 1 3150.2.b.a 8
5.c odd 4 1 3150.2.b.d yes 8
7.b odd 2 1 inner 3150.2.d.e 8
15.d odd 2 1 inner 3150.2.d.e 8
15.e even 4 1 3150.2.b.a 8
15.e even 4 1 3150.2.b.d yes 8
21.c even 2 1 3150.2.d.b 8
35.c odd 2 1 3150.2.d.b 8
35.f even 4 1 3150.2.b.a 8
35.f even 4 1 3150.2.b.d yes 8
105.g even 2 1 inner 3150.2.d.e 8
105.k odd 4 1 3150.2.b.a 8
105.k odd 4 1 3150.2.b.d yes 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3150.2.b.a 8 5.c odd 4 1
3150.2.b.a 8 15.e even 4 1
3150.2.b.a 8 35.f even 4 1
3150.2.b.a 8 105.k odd 4 1
3150.2.b.d yes 8 5.c odd 4 1
3150.2.b.d yes 8 15.e even 4 1
3150.2.b.d yes 8 35.f even 4 1
3150.2.b.d yes 8 105.k odd 4 1
3150.2.d.b 8 3.b odd 2 1
3150.2.d.b 8 5.b even 2 1
3150.2.d.b 8 21.c even 2 1
3150.2.d.b 8 35.c odd 2 1
3150.2.d.e 8 1.a even 1 1 trivial
3150.2.d.e 8 7.b odd 2 1 inner
3150.2.d.e 8 15.d odd 2 1 inner
3150.2.d.e 8 105.g even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3150, [\chi])$$:

 $$T_{11}^{2} + 2$$ $$T_{13}^{4} - 30 T_{13}^{2} + 25$$ $$T_{23} - 1$$

## Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ $$( 1 - T )^{8}$$
$3$ 1
$5$ 1
$7$ $$( 1 - 6 T^{2} + 49 T^{4} )^{2}$$
$11$ $$( 1 - 20 T^{2} + 121 T^{4} )^{4}$$
$13$ $$( 1 + 22 T^{2} + 259 T^{4} + 3718 T^{6} + 28561 T^{8} )^{2}$$
$17$ $$( 1 - 29 T^{2} + 289 T^{4} )^{4}$$
$19$ $$( 1 - 16 T^{2} - 14 T^{4} - 5776 T^{6} + 130321 T^{8} )^{2}$$
$23$ $$( 1 - T + 23 T^{2} )^{8}$$
$29$ $$( 1 - 30 T^{2} + 107 T^{4} - 25230 T^{6} + 707281 T^{8} )^{2}$$
$31$ $$( 1 - 34 T^{2} + 1411 T^{4} - 32674 T^{6} + 923521 T^{8} )^{2}$$
$37$ $$( 1 - 66 T^{2} + 1369 T^{4} )^{4}$$
$41$ $$( 1 + 74 T^{2} + 3931 T^{4} + 124394 T^{6} + 2825761 T^{8} )^{2}$$
$43$ $$( 1 - 118 T^{2} + 6979 T^{4} - 218182 T^{6} + 3418801 T^{8} )^{2}$$
$47$ $$( 1 - 128 T^{2} + 7714 T^{4} - 282752 T^{6} + 4879681 T^{8} )^{2}$$
$53$ $$( 1 - 2 T + 57 T^{2} - 106 T^{3} + 2809 T^{4} )^{4}$$
$59$ $$( 1 + 46 T^{2} + 5691 T^{4} + 160126 T^{6} + 12117361 T^{8} )^{2}$$
$61$ $$( 1 - 214 T^{2} + 18691 T^{4} - 796294 T^{6} + 13845841 T^{8} )^{2}$$
$67$ $$( 1 - 67 T^{2} )^{8}$$
$71$ $$( 1 - 20 T^{2} - 2618 T^{4} - 100820 T^{6} + 25411681 T^{8} )^{2}$$
$73$ $$( 1 + 72 T^{2} + 4754 T^{4} + 383688 T^{6} + 28398241 T^{8} )^{2}$$
$79$ $$( 1 - 12 T + 144 T^{2} - 948 T^{3} + 6241 T^{4} )^{4}$$
$83$ $$( 1 - 62 T^{2} + 9739 T^{4} - 427118 T^{6} + 47458321 T^{8} )^{2}$$
$89$ $$( 1 + 116 T^{2} + 6406 T^{4} + 918836 T^{6} + 62742241 T^{8} )^{2}$$
$97$ $$( 1 + 48 T^{2} - 9406 T^{4} + 451632 T^{6} + 88529281 T^{8} )^{2}$$