Properties

Label 3150.2.cu
Level 3150
Weight 2
Character orbit cu
Rep. character \(\chi_{3150}(433,\cdot)\)
Character field \(\Q(\zeta_{20})\)
Dimension 800
Sturm bound 1440

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.cu (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 175 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3150, [\chi])\).

Total New Old
Modular forms 5888 800 5088
Cusp forms 5632 800 4832
Eisenstein series 256 0 256

Trace form

\( 800q + O(q^{10}) \) \( 800q + 200q^{16} + 24q^{22} - 16q^{23} - 16q^{25} - 20q^{28} - 40q^{29} - 20q^{35} - 16q^{37} - 80q^{43} + 32q^{50} + 32q^{53} - 24q^{65} + 48q^{67} + 80q^{70} + 144q^{77} - 32q^{85} + 16q^{88} + 24q^{92} + 24q^{95} + 16q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3150, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1575, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database