Newspace parameters
Level: | \( N \) | \(=\) | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3150.bp (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(25.1528766367\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
899.1 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | −2.62916 | − | 0.295801i | 1.00000 | 0 | 0 | ||||||||||||
899.2 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | −2.61577 | + | 0.397202i | 1.00000 | 0 | 0 | ||||||||||||
899.3 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | −2.54649 | + | 0.717905i | 1.00000 | 0 | 0 | ||||||||||||
899.4 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | −2.16005 | − | 1.52781i | 1.00000 | 0 | 0 | ||||||||||||
899.5 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | −1.22849 | + | 2.34325i | 1.00000 | 0 | 0 | ||||||||||||
899.6 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | −1.04195 | − | 2.43194i | 1.00000 | 0 | 0 | ||||||||||||
899.7 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 1.04195 | + | 2.43194i | 1.00000 | 0 | 0 | ||||||||||||
899.8 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 1.22849 | − | 2.34325i | 1.00000 | 0 | 0 | ||||||||||||
899.9 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 2.16005 | + | 1.52781i | 1.00000 | 0 | 0 | ||||||||||||
899.10 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 2.54649 | − | 0.717905i | 1.00000 | 0 | 0 | ||||||||||||
899.11 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 2.61577 | − | 0.397202i | 1.00000 | 0 | 0 | ||||||||||||
899.12 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 0 | 0 | 2.62916 | + | 0.295801i | 1.00000 | 0 | 0 | ||||||||||||
1349.1 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | −2.62916 | + | 0.295801i | 1.00000 | 0 | 0 | ||||||||||||
1349.2 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | −2.61577 | − | 0.397202i | 1.00000 | 0 | 0 | ||||||||||||
1349.3 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | −2.54649 | − | 0.717905i | 1.00000 | 0 | 0 | ||||||||||||
1349.4 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | −2.16005 | + | 1.52781i | 1.00000 | 0 | 0 | ||||||||||||
1349.5 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | −1.22849 | − | 2.34325i | 1.00000 | 0 | 0 | ||||||||||||
1349.6 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | −1.04195 | + | 2.43194i | 1.00000 | 0 | 0 | ||||||||||||
1349.7 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | 1.04195 | − | 2.43194i | 1.00000 | 0 | 0 | ||||||||||||
1349.8 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 0 | 0 | 1.22849 | + | 2.34325i | 1.00000 | 0 | 0 | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
105.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3150.2.bp.g | 24 | |
3.b | odd | 2 | 1 | 3150.2.bp.h | 24 | ||
5.b | even | 2 | 1 | 3150.2.bp.h | 24 | ||
5.c | odd | 4 | 1 | 3150.2.bf.d | ✓ | 24 | |
5.c | odd | 4 | 1 | 3150.2.bf.e | yes | 24 | |
7.d | odd | 6 | 1 | inner | 3150.2.bp.g | 24 | |
15.d | odd | 2 | 1 | inner | 3150.2.bp.g | 24 | |
15.e | even | 4 | 1 | 3150.2.bf.d | ✓ | 24 | |
15.e | even | 4 | 1 | 3150.2.bf.e | yes | 24 | |
21.g | even | 6 | 1 | 3150.2.bp.h | 24 | ||
35.i | odd | 6 | 1 | 3150.2.bp.h | 24 | ||
35.k | even | 12 | 1 | 3150.2.bf.d | ✓ | 24 | |
35.k | even | 12 | 1 | 3150.2.bf.e | yes | 24 | |
105.p | even | 6 | 1 | inner | 3150.2.bp.g | 24 | |
105.w | odd | 12 | 1 | 3150.2.bf.d | ✓ | 24 | |
105.w | odd | 12 | 1 | 3150.2.bf.e | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3150.2.bf.d | ✓ | 24 | 5.c | odd | 4 | 1 | |
3150.2.bf.d | ✓ | 24 | 15.e | even | 4 | 1 | |
3150.2.bf.d | ✓ | 24 | 35.k | even | 12 | 1 | |
3150.2.bf.d | ✓ | 24 | 105.w | odd | 12 | 1 | |
3150.2.bf.e | yes | 24 | 5.c | odd | 4 | 1 | |
3150.2.bf.e | yes | 24 | 15.e | even | 4 | 1 | |
3150.2.bf.e | yes | 24 | 35.k | even | 12 | 1 | |
3150.2.bf.e | yes | 24 | 105.w | odd | 12 | 1 | |
3150.2.bp.g | 24 | 1.a | even | 1 | 1 | trivial | |
3150.2.bp.g | 24 | 7.d | odd | 6 | 1 | inner | |
3150.2.bp.g | 24 | 15.d | odd | 2 | 1 | inner | |
3150.2.bp.g | 24 | 105.p | even | 6 | 1 | inner | |
3150.2.bp.h | 24 | 3.b | odd | 2 | 1 | ||
3150.2.bp.h | 24 | 5.b | even | 2 | 1 | ||
3150.2.bp.h | 24 | 21.g | even | 6 | 1 | ||
3150.2.bp.h | 24 | 35.i | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):
\( T_{11}^{24} - 68 T_{11}^{22} + 3232 T_{11}^{20} - 77312 T_{11}^{18} + 1330444 T_{11}^{16} + \cdots + 1679616 \)
|
\( T_{13}^{12} - 114T_{13}^{10} + 4937T_{13}^{8} - 100896T_{13}^{6} + 969088T_{13}^{4} - 3581952T_{13}^{2} + 1806336 \)
|
\( T_{17}^{12} - 12 T_{17}^{11} + 32 T_{17}^{10} + 192 T_{17}^{9} - 861 T_{17}^{8} - 2832 T_{17}^{7} + \cdots + 142884 \)
|