Properties

Label 3150.2.bm
Level 3150
Weight 2
Character orbit bm
Rep. character \(\chi_{3150}(1301,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 304
Sturm bound 1440

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.bm (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3150, [\chi])\).

Total New Old
Modular forms 1488 304 1184
Cusp forms 1392 304 1088
Eisenstein series 96 0 96

Trace form

\( 304q + 152q^{4} + 2q^{7} - 12q^{9} + O(q^{10}) \) \( 304q + 152q^{4} + 2q^{7} - 12q^{9} + 12q^{11} + 6q^{14} - 152q^{16} - 4q^{18} - 14q^{21} - 24q^{23} + 4q^{28} + 12q^{29} - 12q^{36} - 8q^{37} + 12q^{39} + 8q^{42} + 4q^{43} - 24q^{46} + 4q^{49} + 20q^{51} + 6q^{56} + 24q^{57} + 12q^{58} - 40q^{63} - 304q^{64} - 28q^{67} + 16q^{72} + 36q^{74} - 66q^{77} - 40q^{78} - 4q^{79} - 20q^{81} + 2q^{84} - 24q^{86} + 24q^{91} - 24q^{92} + 88q^{93} + 112q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3150, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1575, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database