Properties

Label 3150.2.bf.f.1601.2
Level 3150
Weight 2
Character 3150.1601
Analytic conductor 25.153
Analytic rank 0
Dimension 32
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Coefficient ring index: multiple of None
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.2
Character \(\chi\) = 3150.1601
Dual form 3150.2.bf.f.1151.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(2.54232 - 0.732536i) q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(2.54232 - 0.732536i) q^{7} -1.00000i q^{8} +(2.07577 - 1.19845i) q^{11} +5.67714i q^{13} +(-2.56798 - 0.636766i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.03596 - 1.79434i) q^{17} +(5.12164 + 2.95698i) q^{19} -2.39690 q^{22} +(1.61233 + 0.930877i) q^{23} +(2.83857 - 4.91654i) q^{26} +(1.90555 + 1.83545i) q^{28} +4.88913i q^{29} +(-3.92008 + 2.26326i) q^{31} +(0.866025 - 0.500000i) q^{32} +2.07192i q^{34} +(-1.48455 + 2.57132i) q^{37} +(-2.95698 - 5.12164i) q^{38} +7.04428 q^{41} -8.55956 q^{43} +(2.07577 + 1.19845i) q^{44} +(-0.930877 - 1.61233i) q^{46} +(-2.78941 + 4.83140i) q^{47} +(5.92678 - 3.72468i) q^{49} +(-4.91654 + 2.83857i) q^{52} +(-3.62931 + 2.09538i) q^{53} +(-0.732536 - 2.54232i) q^{56} +(2.44457 - 4.23411i) q^{58} +(-1.00312 - 1.73746i) q^{59} +(10.7862 + 6.22739i) q^{61} +4.52651 q^{62} -1.00000 q^{64} +(3.81111 + 6.60103i) q^{67} +(1.03596 - 1.79434i) q^{68} -9.14126i q^{71} +(0.937339 - 0.541173i) q^{73} +(2.57132 - 1.48455i) q^{74} +5.91397i q^{76} +(4.39937 - 4.56742i) q^{77} +(-8.38392 + 14.5214i) q^{79} +(-6.10053 - 3.52214i) q^{82} -13.6122 q^{83} +(7.41279 + 4.27978i) q^{86} +(-1.19845 - 2.07577i) q^{88} +(6.63129 - 11.4857i) q^{89} +(4.15870 + 14.4331i) q^{91} +1.86175i q^{92} +(4.83140 - 2.78941i) q^{94} -12.8260i q^{97} +(-6.99508 + 0.262276i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{4} + O(q^{10}) \) \( 32q + 16q^{4} - 16q^{16} - 48q^{19} + 24q^{31} - 16q^{46} + 56q^{49} + 48q^{61} - 32q^{64} - 8q^{79} - 56q^{91} + 120q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.54232 0.732536i 0.960907 0.276872i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 2.07577 1.19845i 0.625869 0.361346i −0.153282 0.988183i \(-0.548984\pi\)
0.779150 + 0.626837i \(0.215651\pi\)
\(12\) 0 0
\(13\) 5.67714i 1.57455i 0.616599 + 0.787277i \(0.288510\pi\)
−0.616599 + 0.787277i \(0.711490\pi\)
\(14\) −2.56798 0.636766i −0.686322 0.170183i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.03596 1.79434i −0.251258 0.435191i 0.712615 0.701556i \(-0.247511\pi\)
−0.963872 + 0.266365i \(0.914177\pi\)
\(18\) 0 0
\(19\) 5.12164 + 2.95698i 1.17499 + 0.678378i 0.954849 0.297091i \(-0.0960164\pi\)
0.220136 + 0.975469i \(0.429350\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.39690 −0.511020
\(23\) 1.61233 + 0.930877i 0.336193 + 0.194101i 0.658587 0.752504i \(-0.271154\pi\)
−0.322394 + 0.946606i \(0.604488\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.83857 4.91654i 0.556689 0.964214i
\(27\) 0 0
\(28\) 1.90555 + 1.83545i 0.360116 + 0.346867i
\(29\) 4.88913i 0.907889i 0.891030 + 0.453944i \(0.149984\pi\)
−0.891030 + 0.453944i \(0.850016\pi\)
\(30\) 0 0
\(31\) −3.92008 + 2.26326i −0.704067 + 0.406493i −0.808860 0.588001i \(-0.799915\pi\)
0.104794 + 0.994494i \(0.466582\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 2.07192i 0.355332i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.48455 + 2.57132i −0.244059 + 0.422723i −0.961867 0.273519i \(-0.911812\pi\)
0.717807 + 0.696242i \(0.245146\pi\)
\(38\) −2.95698 5.12164i −0.479686 0.830840i
\(39\) 0 0
\(40\) 0 0
\(41\) 7.04428 1.10013 0.550066 0.835121i \(-0.314603\pi\)
0.550066 + 0.835121i \(0.314603\pi\)
\(42\) 0 0
\(43\) −8.55956 −1.30532 −0.652660 0.757651i \(-0.726347\pi\)
−0.652660 + 0.757651i \(0.726347\pi\)
\(44\) 2.07577 + 1.19845i 0.312934 + 0.180673i
\(45\) 0 0
\(46\) −0.930877 1.61233i −0.137250 0.237725i
\(47\) −2.78941 + 4.83140i −0.406877 + 0.704732i −0.994538 0.104375i \(-0.966716\pi\)
0.587661 + 0.809107i \(0.300049\pi\)
\(48\) 0 0
\(49\) 5.92678 3.72468i 0.846683 0.532097i
\(50\) 0 0
\(51\) 0 0
\(52\) −4.91654 + 2.83857i −0.681802 + 0.393639i
\(53\) −3.62931 + 2.09538i −0.498524 + 0.287823i −0.728104 0.685467i \(-0.759598\pi\)
0.229580 + 0.973290i \(0.426265\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.732536 2.54232i −0.0978892 0.339732i
\(57\) 0 0
\(58\) 2.44457 4.23411i 0.320987 0.555966i
\(59\) −1.00312 1.73746i −0.130595 0.226198i 0.793311 0.608817i \(-0.208356\pi\)
−0.923906 + 0.382619i \(0.875022\pi\)
\(60\) 0 0
\(61\) 10.7862 + 6.22739i 1.38103 + 0.797335i 0.992281 0.124011i \(-0.0395757\pi\)
0.388744 + 0.921346i \(0.372909\pi\)
\(62\) 4.52651 0.574868
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 3.81111 + 6.60103i 0.465601 + 0.806445i 0.999228 0.0392750i \(-0.0125048\pi\)
−0.533627 + 0.845720i \(0.679171\pi\)
\(68\) 1.03596 1.79434i 0.125629 0.217596i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.14126i 1.08487i −0.840099 0.542434i \(-0.817503\pi\)
0.840099 0.542434i \(-0.182497\pi\)
\(72\) 0 0
\(73\) 0.937339 0.541173i 0.109707 0.0633395i −0.444142 0.895956i \(-0.646492\pi\)
0.553850 + 0.832617i \(0.313158\pi\)
\(74\) 2.57132 1.48455i 0.298910 0.172576i
\(75\) 0 0
\(76\) 5.91397i 0.678378i
\(77\) 4.39937 4.56742i 0.501355 0.520505i
\(78\) 0 0
\(79\) −8.38392 + 14.5214i −0.943265 + 1.63378i −0.184076 + 0.982912i \(0.558929\pi\)
−0.759189 + 0.650870i \(0.774404\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −6.10053 3.52214i −0.673690 0.388955i
\(83\) −13.6122 −1.49414 −0.747068 0.664747i \(-0.768539\pi\)
−0.747068 + 0.664747i \(0.768539\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 7.41279 + 4.27978i 0.799342 + 0.461500i
\(87\) 0 0
\(88\) −1.19845 2.07577i −0.127755 0.221278i
\(89\) 6.63129 11.4857i 0.702916 1.21749i −0.264523 0.964379i \(-0.585214\pi\)
0.967438 0.253106i \(-0.0814523\pi\)
\(90\) 0 0
\(91\) 4.15870 + 14.4331i 0.435951 + 1.51300i
\(92\) 1.86175i 0.194101i
\(93\) 0 0
\(94\) 4.83140 2.78941i 0.498321 0.287706i
\(95\) 0 0
\(96\) 0 0
\(97\) 12.8260i 1.30229i −0.758955 0.651143i \(-0.774290\pi\)
0.758955 0.651143i \(-0.225710\pi\)
\(98\) −6.99508 + 0.262276i −0.706610 + 0.0264939i
\(99\) 0 0
\(100\) 0 0
\(101\) 4.45573 + 7.71756i 0.443362 + 0.767926i 0.997937 0.0642084i \(-0.0204523\pi\)
−0.554574 + 0.832134i \(0.687119\pi\)
\(102\) 0 0
\(103\) −9.37021 5.40989i −0.923274 0.533053i −0.0385960 0.999255i \(-0.512289\pi\)
−0.884678 + 0.466202i \(0.845622\pi\)
\(104\) 5.67714 0.556689
\(105\) 0 0
\(106\) 4.19077 0.407043
\(107\) −4.82989 2.78854i −0.466923 0.269578i 0.248028 0.968753i \(-0.420218\pi\)
−0.714951 + 0.699175i \(0.753551\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.636766 + 2.56798i −0.0601687 + 0.242651i
\(113\) 14.5030i 1.36432i −0.731202 0.682161i \(-0.761040\pi\)
0.731202 0.682161i \(-0.238960\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.23411 + 2.44457i −0.393127 + 0.226972i
\(117\) 0 0
\(118\) 2.00624i 0.184690i
\(119\) −3.94816 3.80290i −0.361928 0.348612i
\(120\) 0 0
\(121\) −2.62745 + 4.55087i −0.238859 + 0.413715i
\(122\) −6.22739 10.7862i −0.563801 0.976532i
\(123\) 0 0
\(124\) −3.92008 2.26326i −0.352033 0.203247i
\(125\) 0 0
\(126\) 0 0
\(127\) 19.2462 1.70783 0.853913 0.520416i \(-0.174223\pi\)
0.853913 + 0.520416i \(0.174223\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) −2.34970 + 4.06980i −0.205294 + 0.355580i −0.950226 0.311560i \(-0.899149\pi\)
0.744932 + 0.667140i \(0.232482\pi\)
\(132\) 0 0
\(133\) 15.1870 + 3.76581i 1.31688 + 0.326537i
\(134\) 7.62222i 0.658459i
\(135\) 0 0
\(136\) −1.79434 + 1.03596i −0.153863 + 0.0888330i
\(137\) −19.8185 + 11.4422i −1.69321 + 0.977577i −0.741317 + 0.671155i \(0.765798\pi\)
−0.951896 + 0.306421i \(0.900868\pi\)
\(138\) 0 0
\(139\) 9.13862i 0.775127i −0.921843 0.387564i \(-0.873317\pi\)
0.921843 0.387564i \(-0.126683\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.57063 + 7.91656i −0.383559 + 0.664343i
\(143\) 6.80375 + 11.7844i 0.568958 + 0.985465i
\(144\) 0 0
\(145\) 0 0
\(146\) −1.08235 −0.0895756
\(147\) 0 0
\(148\) −2.96911 −0.244059
\(149\) 9.05052 + 5.22532i 0.741448 + 0.428075i 0.822596 0.568627i \(-0.192525\pi\)
−0.0811477 + 0.996702i \(0.525859\pi\)
\(150\) 0 0
\(151\) 8.85937 + 15.3449i 0.720965 + 1.24875i 0.960613 + 0.277888i \(0.0896346\pi\)
−0.239648 + 0.970860i \(0.577032\pi\)
\(152\) 2.95698 5.12164i 0.239843 0.415420i
\(153\) 0 0
\(154\) −6.09368 + 1.75581i −0.491042 + 0.141487i
\(155\) 0 0
\(156\) 0 0
\(157\) 5.26801 3.04149i 0.420433 0.242737i −0.274830 0.961493i \(-0.588621\pi\)
0.695263 + 0.718756i \(0.255288\pi\)
\(158\) 14.5214 8.38392i 1.15526 0.666989i
\(159\) 0 0
\(160\) 0 0
\(161\) 4.78095 + 1.18550i 0.376792 + 0.0934305i
\(162\) 0 0
\(163\) −0.468670 + 0.811759i −0.0367090 + 0.0635819i −0.883796 0.467872i \(-0.845021\pi\)
0.847087 + 0.531454i \(0.178354\pi\)
\(164\) 3.52214 + 6.10053i 0.275033 + 0.476371i
\(165\) 0 0
\(166\) 11.7885 + 6.80611i 0.914968 + 0.528257i
\(167\) 17.2101 1.33176 0.665879 0.746060i \(-0.268057\pi\)
0.665879 + 0.746060i \(0.268057\pi\)
\(168\) 0 0
\(169\) −19.2299 −1.47922
\(170\) 0 0
\(171\) 0 0
\(172\) −4.27978 7.41279i −0.326330 0.565220i
\(173\) −0.988114 + 1.71146i −0.0751249 + 0.130120i −0.901141 0.433527i \(-0.857269\pi\)
0.826016 + 0.563647i \(0.190602\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.39690i 0.180673i
\(177\) 0 0
\(178\) −11.4857 + 6.63129i −0.860893 + 0.497037i
\(179\) 0.768461 0.443671i 0.0574375 0.0331615i −0.471006 0.882130i \(-0.656109\pi\)
0.528444 + 0.848968i \(0.322776\pi\)
\(180\) 0 0
\(181\) 4.89973i 0.364194i 0.983281 + 0.182097i \(0.0582885\pi\)
−0.983281 + 0.182097i \(0.941712\pi\)
\(182\) 3.61500 14.5788i 0.267962 1.08065i
\(183\) 0 0
\(184\) 0.930877 1.61233i 0.0686252 0.118862i
\(185\) 0 0
\(186\) 0 0
\(187\) −4.30084 2.48309i −0.314509 0.181582i
\(188\) −5.57882 −0.406877
\(189\) 0 0
\(190\) 0 0
\(191\) −2.44949 1.41421i −0.177239 0.102329i 0.408756 0.912644i \(-0.365963\pi\)
−0.585995 + 0.810315i \(0.699296\pi\)
\(192\) 0 0
\(193\) 9.74828 + 16.8845i 0.701697 + 1.21537i 0.967871 + 0.251449i \(0.0809071\pi\)
−0.266174 + 0.963925i \(0.585760\pi\)
\(194\) −6.41301 + 11.1077i −0.460428 + 0.797484i
\(195\) 0 0
\(196\) 6.18906 + 3.27040i 0.442076 + 0.233600i
\(197\) 27.1576i 1.93490i 0.253069 + 0.967448i \(0.418560\pi\)
−0.253069 + 0.967448i \(0.581440\pi\)
\(198\) 0 0
\(199\) 3.00000 1.73205i 0.212664 0.122782i −0.389885 0.920864i \(-0.627485\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 8.91147i 0.627009i
\(203\) 3.58146 + 12.4297i 0.251369 + 0.872396i
\(204\) 0 0
\(205\) 0 0
\(206\) 5.40989 + 9.37021i 0.376925 + 0.652853i
\(207\) 0 0
\(208\) −4.91654 2.83857i −0.340901 0.196819i
\(209\) 14.1752 0.980516
\(210\) 0 0
\(211\) −4.06071 −0.279551 −0.139775 0.990183i \(-0.544638\pi\)
−0.139775 + 0.990183i \(0.544638\pi\)
\(212\) −3.62931 2.09538i −0.249262 0.143912i
\(213\) 0 0
\(214\) 2.78854 + 4.82989i 0.190620 + 0.330164i
\(215\) 0 0
\(216\) 0 0
\(217\) −8.30817 + 8.62552i −0.563996 + 0.585538i
\(218\) 2.00000i 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) 10.1867 5.88130i 0.685232 0.395619i
\(222\) 0 0
\(223\) 16.1486i 1.08139i −0.841218 0.540696i \(-0.818161\pi\)
0.841218 0.540696i \(-0.181839\pi\)
\(224\) 1.83545 1.90555i 0.122636 0.127320i
\(225\) 0 0
\(226\) −7.25148 + 12.5599i −0.482361 + 0.835474i
\(227\) 0.839901 + 1.45475i 0.0557462 + 0.0965552i 0.892552 0.450945i \(-0.148913\pi\)
−0.836806 + 0.547500i \(0.815580\pi\)
\(228\) 0 0
\(229\) 10.9143 + 6.30136i 0.721236 + 0.416406i 0.815207 0.579169i \(-0.196623\pi\)
−0.0939717 + 0.995575i \(0.529956\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.88913 0.320987
\(233\) 12.5715 + 7.25818i 0.823589 + 0.475499i 0.851653 0.524107i \(-0.175601\pi\)
−0.0280635 + 0.999606i \(0.508934\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.00312 1.73746i 0.0652977 0.113099i
\(237\) 0 0
\(238\) 1.51776 + 5.26749i 0.0983816 + 0.341441i
\(239\) 0.207089i 0.0133955i −0.999978 0.00669774i \(-0.997868\pi\)
0.999978 0.00669774i \(-0.00213197\pi\)
\(240\) 0 0
\(241\) 9.04172 5.22024i 0.582428 0.336265i −0.179669 0.983727i \(-0.557503\pi\)
0.762098 + 0.647462i \(0.224169\pi\)
\(242\) 4.55087 2.62745i 0.292541 0.168899i
\(243\) 0 0
\(244\) 12.4548i 0.797335i
\(245\) 0 0
\(246\) 0 0
\(247\) −16.7872 + 29.0763i −1.06814 + 1.85008i
\(248\) 2.26326 + 3.92008i 0.143717 + 0.248925i
\(249\) 0 0
\(250\) 0 0
\(251\) 28.6464 1.80815 0.904074 0.427377i \(-0.140562\pi\)
0.904074 + 0.427377i \(0.140562\pi\)
\(252\) 0 0
\(253\) 4.46243 0.280551
\(254\) −16.6677 9.62311i −1.04583 0.603808i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −12.4595 + 21.5805i −0.777202 + 1.34615i 0.156346 + 0.987702i \(0.450029\pi\)
−0.933548 + 0.358452i \(0.883305\pi\)
\(258\) 0 0
\(259\) −1.89063 + 7.62462i −0.117478 + 0.473771i
\(260\) 0 0
\(261\) 0 0
\(262\) 4.06980 2.34970i 0.251433 0.145165i
\(263\) 16.6197 9.59538i 1.02481 0.591677i 0.109319 0.994007i \(-0.465133\pi\)
0.915495 + 0.402330i \(0.131800\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −11.2694 10.8548i −0.690970 0.665548i
\(267\) 0 0
\(268\) −3.81111 + 6.60103i −0.232801 + 0.403222i
\(269\) −2.42744 4.20446i −0.148004 0.256350i 0.782486 0.622668i \(-0.213951\pi\)
−0.930490 + 0.366318i \(0.880618\pi\)
\(270\) 0 0
\(271\) −11.8344 6.83257i −0.718886 0.415049i 0.0954567 0.995434i \(-0.469569\pi\)
−0.814342 + 0.580385i \(0.802902\pi\)
\(272\) 2.07192 0.125629
\(273\) 0 0
\(274\) 22.8845 1.38250
\(275\) 0 0
\(276\) 0 0
\(277\) 6.06491 + 10.5047i 0.364405 + 0.631168i 0.988680 0.150036i \(-0.0479391\pi\)
−0.624276 + 0.781204i \(0.714606\pi\)
\(278\) −4.56931 + 7.91427i −0.274049 + 0.474667i
\(279\) 0 0
\(280\) 0 0
\(281\) 32.6206i 1.94598i −0.230839 0.972992i \(-0.574147\pi\)
0.230839 0.972992i \(-0.425853\pi\)
\(282\) 0 0
\(283\) 10.9647 6.33045i 0.651781 0.376306i −0.137357 0.990522i \(-0.543861\pi\)
0.789138 + 0.614216i \(0.210527\pi\)
\(284\) 7.91656 4.57063i 0.469761 0.271217i
\(285\) 0 0
\(286\) 13.6075i 0.804628i
\(287\) 17.9088 5.16019i 1.05712 0.304596i
\(288\) 0 0
\(289\) 6.35357 11.0047i 0.373739 0.647335i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.937339 + 0.541173i 0.0548536 + 0.0316698i
\(293\) −25.1151 −1.46724 −0.733621 0.679559i \(-0.762171\pi\)
−0.733621 + 0.679559i \(0.762171\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.57132 + 1.48455i 0.149455 + 0.0862880i
\(297\) 0 0
\(298\) −5.22532 9.05052i −0.302695 0.524283i
\(299\) −5.28472 + 9.15340i −0.305623 + 0.529355i
\(300\) 0 0
\(301\) −21.7611 + 6.27018i −1.25429 + 0.361407i
\(302\) 17.7187i 1.01960i
\(303\) 0 0
\(304\) −5.12164 + 2.95698i −0.293746 + 0.169595i
\(305\) 0 0
\(306\) 0 0
\(307\) 18.5674i 1.05970i −0.848092 0.529849i \(-0.822249\pi\)
0.848092 0.529849i \(-0.177751\pi\)
\(308\) 6.15518 + 1.52626i 0.350724 + 0.0869668i
\(309\) 0 0
\(310\) 0 0
\(311\) −6.21831 10.7704i −0.352608 0.610735i 0.634098 0.773253i \(-0.281372\pi\)
−0.986706 + 0.162518i \(0.948038\pi\)
\(312\) 0 0
\(313\) 10.7504 + 6.20675i 0.607649 + 0.350826i 0.772045 0.635568i \(-0.219234\pi\)
−0.164396 + 0.986394i \(0.552567\pi\)
\(314\) −6.08297 −0.343282
\(315\) 0 0
\(316\) −16.7678 −0.943265
\(317\) 21.3444 + 12.3232i 1.19882 + 0.692141i 0.960293 0.278995i \(-0.0900012\pi\)
0.238530 + 0.971135i \(0.423335\pi\)
\(318\) 0 0
\(319\) 5.85937 + 10.1487i 0.328062 + 0.568219i
\(320\) 0 0
\(321\) 0 0
\(322\) −3.54767 3.41715i −0.197704 0.190430i
\(323\) 12.2533i 0.681791i
\(324\) 0 0
\(325\) 0 0
\(326\) 0.811759 0.468670i 0.0449592 0.0259572i
\(327\) 0 0
\(328\) 7.04428i 0.388955i
\(329\) −3.55240 + 14.3263i −0.195850 + 0.789835i
\(330\) 0 0
\(331\) 12.5788 21.7871i 0.691392 1.19753i −0.279989 0.960003i \(-0.590331\pi\)
0.971382 0.237524i \(-0.0763357\pi\)
\(332\) −6.80611 11.7885i −0.373534 0.646980i
\(333\) 0 0
\(334\) −14.9044 8.60505i −0.815531 0.470847i
\(335\) 0 0
\(336\) 0 0
\(337\) 14.4214 0.785584 0.392792 0.919627i \(-0.371509\pi\)
0.392792 + 0.919627i \(0.371509\pi\)
\(338\) 16.6536 + 9.61494i 0.905834 + 0.522984i
\(339\) 0 0
\(340\) 0 0
\(341\) −5.42479 + 9.39601i −0.293769 + 0.508823i
\(342\) 0 0
\(343\) 12.3393 13.8109i 0.666261 0.745719i
\(344\) 8.55956i 0.461500i
\(345\) 0 0
\(346\) 1.71146 0.988114i 0.0920088 0.0531213i
\(347\) 12.5457 7.24329i 0.673491 0.388840i −0.123907 0.992294i \(-0.539543\pi\)
0.797398 + 0.603454i \(0.206209\pi\)
\(348\) 0 0
\(349\) 2.12483i 0.113739i 0.998382 + 0.0568697i \(0.0181119\pi\)
−0.998382 + 0.0568697i \(0.981888\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.19845 2.07577i 0.0638775 0.110639i
\(353\) 7.26335 + 12.5805i 0.386589 + 0.669592i 0.991988 0.126330i \(-0.0403199\pi\)
−0.605399 + 0.795922i \(0.706987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 13.2626 0.702916
\(357\) 0 0
\(358\) −0.887342 −0.0468975
\(359\) −3.42054 1.97485i −0.180529 0.104228i 0.407012 0.913423i \(-0.366571\pi\)
−0.587541 + 0.809194i \(0.699904\pi\)
\(360\) 0 0
\(361\) 7.98749 + 13.8347i 0.420394 + 0.728144i
\(362\) 2.44986 4.24329i 0.128762 0.223022i
\(363\) 0 0
\(364\) −10.4201 + 10.8181i −0.546160 + 0.567022i
\(365\) 0 0
\(366\) 0 0
\(367\) 23.9826 13.8464i 1.25188 0.722775i 0.280400 0.959883i \(-0.409533\pi\)
0.971483 + 0.237109i \(0.0761997\pi\)
\(368\) −1.61233 + 0.930877i −0.0840483 + 0.0485253i
\(369\) 0 0
\(370\) 0 0
\(371\) −7.69193 + 7.98574i −0.399345 + 0.414599i
\(372\) 0 0
\(373\) 6.06491 10.5047i 0.314029 0.543914i −0.665202 0.746664i \(-0.731654\pi\)
0.979231 + 0.202750i \(0.0649878\pi\)
\(374\) 2.48309 + 4.30084i 0.128398 + 0.222391i
\(375\) 0 0
\(376\) 4.83140 + 2.78941i 0.249160 + 0.143853i
\(377\) −27.7563 −1.42952
\(378\) 0 0
\(379\) 18.6821 0.959636 0.479818 0.877368i \(-0.340703\pi\)
0.479818 + 0.877368i \(0.340703\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.41421 + 2.44949i 0.0723575 + 0.125327i
\(383\) −5.51463 + 9.55162i −0.281784 + 0.488065i −0.971824 0.235706i \(-0.924260\pi\)
0.690040 + 0.723771i \(0.257593\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.4966i 0.992349i
\(387\) 0 0
\(388\) 11.1077 6.41301i 0.563906 0.325571i
\(389\) −29.7662 + 17.1855i −1.50921 + 0.871341i −0.509264 + 0.860611i \(0.670082\pi\)
−0.999942 + 0.0107299i \(0.996584\pi\)
\(390\) 0 0
\(391\) 3.85741i 0.195078i
\(392\) −3.72468 5.92678i −0.188125 0.299348i
\(393\) 0 0
\(394\) 13.5788 23.5191i 0.684089 1.18488i
\(395\) 0 0
\(396\) 0 0
\(397\) −26.8561 15.5054i −1.34787 0.778191i −0.359920 0.932983i \(-0.617196\pi\)
−0.987947 + 0.154792i \(0.950529\pi\)
\(398\) −3.46410 −0.173640
\(399\) 0 0
\(400\) 0 0
\(401\) 8.20771 + 4.73872i 0.409873 + 0.236641i 0.690735 0.723108i \(-0.257287\pi\)
−0.280862 + 0.959748i \(0.590620\pi\)
\(402\) 0 0
\(403\) −12.8488 22.2548i −0.640045 1.10859i
\(404\) −4.45573 + 7.71756i −0.221681 + 0.383963i
\(405\) 0 0
\(406\) 3.11323 12.5552i 0.154507 0.623104i
\(407\) 7.11665i 0.352759i
\(408\) 0 0
\(409\) −8.20805 + 4.73892i −0.405862 + 0.234324i −0.689010 0.724752i \(-0.741954\pi\)
0.283148 + 0.959076i \(0.408621\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 10.8198i 0.533053i
\(413\) −3.82301 3.68235i −0.188118 0.181197i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.83857 + 4.91654i 0.139172 + 0.241053i
\(417\) 0 0
\(418\) −12.2760 7.08758i −0.600441 0.346665i
\(419\) 2.54445 0.124305 0.0621523 0.998067i \(-0.480204\pi\)
0.0621523 + 0.998067i \(0.480204\pi\)
\(420\) 0 0
\(421\) −5.08573 −0.247863 −0.123932 0.992291i \(-0.539550\pi\)
−0.123932 + 0.992291i \(0.539550\pi\)
\(422\) 3.51668 + 2.03035i 0.171189 + 0.0988361i
\(423\) 0 0
\(424\) 2.09538 + 3.62931i 0.101761 + 0.176255i
\(425\) 0 0
\(426\) 0 0
\(427\) 31.9836 + 7.93077i 1.54780 + 0.383797i
\(428\) 5.57707i 0.269578i
\(429\) 0 0
\(430\) 0 0
\(431\) −11.5164 + 6.64902i −0.554727 + 0.320272i −0.751027 0.660272i \(-0.770441\pi\)
0.196299 + 0.980544i \(0.437108\pi\)
\(432\) 0 0
\(433\) 12.7895i 0.614626i 0.951608 + 0.307313i \(0.0994299\pi\)
−0.951608 + 0.307313i \(0.900570\pi\)
\(434\) 11.5078 3.31583i 0.552394 0.159165i
\(435\) 0 0
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) 5.50517 + 9.53524i 0.263348 + 0.456132i
\(438\) 0 0
\(439\) −0.323211 0.186606i −0.0154260 0.00890623i 0.492267 0.870444i \(-0.336168\pi\)
−0.507693 + 0.861538i \(0.669502\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −11.7626 −0.559490
\(443\) 21.3328 + 12.3165i 1.01355 + 0.585175i 0.912230 0.409679i \(-0.134359\pi\)
0.101323 + 0.994854i \(0.467693\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −8.07432 + 13.9851i −0.382330 + 0.662215i
\(447\) 0 0
\(448\) −2.54232 + 0.732536i −0.120113 + 0.0346091i
\(449\) 40.6223i 1.91708i −0.284950 0.958542i \(-0.591977\pi\)
0.284950 0.958542i \(-0.408023\pi\)
\(450\) 0 0
\(451\) 14.6223 8.44220i 0.688538 0.397528i
\(452\) 12.5599 7.25148i 0.590769 0.341081i
\(453\) 0 0
\(454\) 1.67980i 0.0788370i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.495276 0.857843i 0.0231680 0.0401282i −0.854209 0.519930i \(-0.825958\pi\)
0.877377 + 0.479802i \(0.159291\pi\)
\(458\) −6.30136 10.9143i −0.294443 0.509991i
\(459\) 0 0
\(460\) 0 0
\(461\) −20.7397 −0.965945 −0.482972 0.875636i \(-0.660443\pi\)
−0.482972 + 0.875636i \(0.660443\pi\)
\(462\) 0 0
\(463\) 1.46421 0.0680476 0.0340238 0.999421i \(-0.489168\pi\)
0.0340238 + 0.999421i \(0.489168\pi\)
\(464\) −4.23411 2.44457i −0.196564 0.113486i
\(465\) 0 0
\(466\) −7.25818 12.5715i −0.336229 0.582365i
\(467\) −18.1340 + 31.4090i −0.839142 + 1.45344i 0.0514705 + 0.998675i \(0.483609\pi\)
−0.890613 + 0.454762i \(0.849724\pi\)
\(468\) 0 0
\(469\) 14.5246 + 13.9902i 0.670682 + 0.646006i
\(470\) 0 0
\(471\) 0 0
\(472\) −1.73746 + 1.00312i −0.0799730 + 0.0461724i
\(473\) −17.7677 + 10.2582i −0.816959 + 0.471672i
\(474\) 0 0
\(475\) 0 0
\(476\) 1.31933 5.32066i 0.0604714 0.243872i
\(477\) 0 0
\(478\) −0.103545 + 0.179344i −0.00473602 + 0.00820302i
\(479\) 5.16288 + 8.94237i 0.235898 + 0.408587i 0.959533 0.281595i \(-0.0908635\pi\)
−0.723635 + 0.690183i \(0.757530\pi\)
\(480\) 0 0
\(481\) −14.5978 8.42802i −0.665600 0.384285i
\(482\) −10.4405 −0.475551
\(483\) 0 0
\(484\) −5.25489 −0.238859
\(485\) 0 0
\(486\) 0 0
\(487\) −10.1645 17.6055i −0.460599 0.797781i 0.538392 0.842695i \(-0.319032\pi\)
−0.998991 + 0.0449135i \(0.985699\pi\)
\(488\) 6.22739 10.7862i 0.281901 0.488266i
\(489\) 0 0
\(490\) 0 0
\(491\) 34.6034i 1.56163i 0.624764 + 0.780814i \(0.285195\pi\)
−0.624764 + 0.780814i \(0.714805\pi\)
\(492\) 0 0
\(493\) 8.77276 5.06495i 0.395105 0.228114i
\(494\) 29.0763 16.7872i 1.30820 0.755292i
\(495\) 0 0
\(496\) 4.52651i 0.203247i
\(497\) −6.69630 23.2400i −0.300370 1.04246i
\(498\) 0 0
\(499\) 1.47545 2.55555i 0.0660501 0.114402i −0.831109 0.556109i \(-0.812294\pi\)
0.897159 + 0.441707i \(0.145627\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −24.8085 14.3232i −1.10726 0.639277i
\(503\) 31.8907 1.42193 0.710967 0.703225i \(-0.248258\pi\)
0.710967 + 0.703225i \(0.248258\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.86458 2.23121i −0.171801 0.0991896i
\(507\) 0 0
\(508\) 9.62311 + 16.6677i 0.426957 + 0.739510i
\(509\) −0.421199 + 0.729538i −0.0186693 + 0.0323362i −0.875209 0.483745i \(-0.839276\pi\)
0.856540 + 0.516081i \(0.172610\pi\)
\(510\) 0 0
\(511\) 1.98659 2.06247i 0.0878815 0.0912383i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 21.5805 12.4595i 0.951875 0.549565i
\(515\) 0 0
\(516\) 0 0
\(517\) 13.3718i 0.588093i
\(518\) 5.44964 5.65780i 0.239443 0.248589i
\(519\) 0 0
\(520\) 0 0
\(521\) −2.81499 4.87571i −0.123327 0.213609i 0.797751 0.602987i \(-0.206023\pi\)
−0.921078 + 0.389379i \(0.872690\pi\)
\(522\) 0 0
\(523\) −15.4482 8.91899i −0.675500 0.390000i 0.122657 0.992449i \(-0.460858\pi\)
−0.798158 + 0.602449i \(0.794192\pi\)
\(524\) −4.69940 −0.205294
\(525\) 0 0
\(526\) −19.1908 −0.836757
\(527\) 8.12210 + 4.68930i 0.353804 + 0.204269i
\(528\) 0 0
\(529\) −9.76694 16.9168i −0.424649 0.735514i
\(530\) 0 0
\(531\) 0 0
\(532\) 4.33219 + 15.0352i 0.187824 + 0.651858i
\(533\) 39.9913i 1.73222i
\(534\) 0 0
\(535\) 0 0
\(536\) 6.60103 3.81111i 0.285121 0.164615i
\(537\) 0 0
\(538\) 4.85489i 0.209309i
\(539\) 7.83882 14.8345i 0.337642 0.638968i
\(540\) 0 0
\(541\) 12.7120 22.0179i 0.546533 0.946623i −0.451976 0.892030i \(-0.649281\pi\)
0.998509 0.0545925i \(-0.0173860\pi\)
\(542\) 6.83257 + 11.8344i 0.293484 + 0.508329i
\(543\) 0 0
\(544\) −1.79434 1.03596i −0.0769316 0.0444165i
\(545\) 0 0
\(546\) 0 0
\(547\) −12.1182 −0.518138 −0.259069 0.965859i \(-0.583416\pi\)
−0.259069 + 0.965859i \(0.583416\pi\)
\(548\) −19.8185 11.4422i −0.846606 0.488788i
\(549\) 0 0
\(550\) 0 0
\(551\) −14.4571 + 25.0404i −0.615892 + 1.06676i
\(552\) 0 0
\(553\) −10.6772 + 43.0595i −0.454040 + 1.83108i
\(554\) 12.1298i 0.515346i
\(555\) 0 0
\(556\) 7.91427 4.56931i 0.335640 0.193782i
\(557\) −1.33331 + 0.769786i −0.0564941 + 0.0326169i −0.527981 0.849256i \(-0.677051\pi\)
0.471487 + 0.881873i \(0.343717\pi\)
\(558\) 0 0
\(559\) 48.5938i 2.05530i
\(560\) 0 0
\(561\) 0 0
\(562\) −16.3103 + 28.2503i −0.688009 + 1.19167i
\(563\) −11.2322 19.4548i −0.473381 0.819920i 0.526155 0.850389i \(-0.323633\pi\)
−0.999536 + 0.0304689i \(0.990300\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −12.6609 −0.532177
\(567\) 0 0
\(568\) −9.14126 −0.383559
\(569\) 9.35810 + 5.40290i 0.392312 + 0.226501i 0.683161 0.730267i \(-0.260605\pi\)
−0.290849 + 0.956769i \(0.593938\pi\)
\(570\) 0 0
\(571\) 3.98169 + 6.89649i 0.166629 + 0.288609i 0.937232 0.348705i \(-0.113379\pi\)
−0.770604 + 0.637314i \(0.780045\pi\)
\(572\) −6.80375 + 11.7844i −0.284479 + 0.492732i
\(573\) 0 0
\(574\) −18.0896 4.48555i −0.755045 0.187223i
\(575\) 0 0
\(576\) 0 0
\(577\) 21.2980 12.2964i 0.886648 0.511906i 0.0138033 0.999905i \(-0.495606\pi\)
0.872845 + 0.487998i \(0.162273\pi\)
\(578\) −11.0047 + 6.35357i −0.457735 + 0.264274i
\(579\) 0 0
\(580\) 0 0
\(581\) −34.6066 + 9.97144i −1.43573 + 0.413685i
\(582\) 0 0
\(583\) −5.02242 + 8.69908i −0.208007 + 0.360279i
\(584\) −0.541173 0.937339i −0.0223939 0.0387874i
\(585\) 0 0
\(586\) 21.7503 + 12.5576i 0.898498 + 0.518748i
\(587\) −12.8469 −0.530248 −0.265124 0.964214i \(-0.585413\pi\)
−0.265124 + 0.964214i \(0.585413\pi\)
\(588\) 0 0
\(589\) −26.7696 −1.10302
\(590\) 0 0
\(591\) 0 0
\(592\) −1.48455 2.57132i −0.0610148 0.105681i
\(593\) −8.58155 + 14.8637i −0.352402 + 0.610379i −0.986670 0.162735i \(-0.947968\pi\)
0.634268 + 0.773114i \(0.281302\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.4506i 0.428075i
\(597\) 0 0
\(598\) 9.15340 5.28472i 0.374310 0.216108i
\(599\) −16.9813 + 9.80416i −0.693837 + 0.400587i −0.805048 0.593210i \(-0.797860\pi\)
0.111211 + 0.993797i \(0.464527\pi\)
\(600\) 0 0
\(601\) 28.2340i 1.15169i −0.817560 0.575844i \(-0.804674\pi\)
0.817560 0.575844i \(-0.195326\pi\)
\(602\) 21.9808 + 5.45043i 0.895870 + 0.222143i
\(603\) 0 0
\(604\) −8.85937 + 15.3449i −0.360483 + 0.624374i
\(605\) 0 0
\(606\) 0 0
\(607\) 8.35987 + 4.82657i 0.339316 + 0.195904i 0.659970 0.751292i \(-0.270569\pi\)
−0.320653 + 0.947197i \(0.603902\pi\)
\(608\) 5.91397 0.239843
\(609\) 0 0
\(610\) 0 0
\(611\) −27.4285 15.8359i −1.10964 0.640650i
\(612\) 0 0
\(613\) −4.52794 7.84262i −0.182882 0.316761i 0.759979 0.649948i \(-0.225209\pi\)
−0.942861 + 0.333187i \(0.891876\pi\)
\(614\) −9.28370 + 16.0798i −0.374660 + 0.648930i
\(615\) 0 0
\(616\) −4.56742 4.39937i −0.184026 0.177256i
\(617\) 25.3122i 1.01903i −0.860462 0.509515i \(-0.829825\pi\)
0.860462 0.509515i \(-0.170175\pi\)
\(618\) 0 0
\(619\) −33.6634 + 19.4356i −1.35304 + 0.781181i −0.988675 0.150073i \(-0.952049\pi\)
−0.364370 + 0.931254i \(0.618716\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.4366i 0.498663i
\(623\) 8.44516 34.0581i 0.338348 1.36451i
\(624\) 0 0
\(625\) 0 0
\(626\) −6.20675 10.7504i −0.248072 0.429673i
\(627\) 0 0
\(628\) 5.26801 + 3.04149i 0.210216 + 0.121369i
\(629\) 6.15177 0.245287
\(630\) 0 0
\(631\) −23.8670 −0.950129 −0.475065 0.879951i \(-0.657575\pi\)
−0.475065 + 0.879951i \(0.657575\pi\)
\(632\) 14.5214 + 8.38392i 0.577629 + 0.333494i
\(633\) 0 0
\(634\) −12.3232 21.3444i −0.489417 0.847696i
\(635\) 0 0
\(636\) 0 0
\(637\) 21.1455 + 33.6472i 0.837816 + 1.33315i
\(638\) 11.7187i 0.463949i
\(639\) 0 0
\(640\) 0 0
\(641\) −30.2066 + 17.4398i −1.19309 + 0.688830i −0.959006 0.283386i \(-0.908542\pi\)
−0.234083 + 0.972217i \(0.575209\pi\)
\(642\) 0 0
\(643\) 6.25944i 0.246848i 0.992354 + 0.123424i \(0.0393875\pi\)
−0.992354 + 0.123424i \(0.960612\pi\)
\(644\) 1.36380 + 4.73317i 0.0537413 + 0.186513i
\(645\) 0 0
\(646\) −6.12664 + 10.6117i −0.241050 + 0.417510i
\(647\) −18.7511 32.4778i −0.737181 1.27683i −0.953760 0.300570i \(-0.902823\pi\)
0.216579 0.976265i \(-0.430510\pi\)
\(648\) 0 0
\(649\) −4.16451 2.40438i −0.163471 0.0943801i
\(650\) 0 0
\(651\) 0 0
\(652\) −0.937339 −0.0367090
\(653\) −22.9077 13.2258i −0.896449 0.517565i −0.0204023 0.999792i \(-0.506495\pi\)
−0.876046 + 0.482227i \(0.839828\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.52214 + 6.10053i −0.137516 + 0.238186i
\(657\) 0 0
\(658\) 10.2396 10.6307i 0.399182 0.414430i
\(659\) 19.9524i 0.777234i 0.921399 + 0.388617i \(0.127047\pi\)
−0.921399 + 0.388617i \(0.872953\pi\)
\(660\) 0 0
\(661\) 4.71203 2.72049i 0.183277 0.105815i −0.405555 0.914071i \(-0.632922\pi\)
0.588831 + 0.808256i \(0.299588\pi\)
\(662\) −21.7871 + 12.5788i −0.846779 + 0.488888i
\(663\) 0 0
\(664\) 13.6122i 0.528257i
\(665\) 0 0
\(666\) 0 0
\(667\) −4.55118 + 7.88287i −0.176222 + 0.305226i
\(668\) 8.60505 + 14.9044i 0.332939 + 0.576668i
\(669\) 0 0
\(670\) 0 0
\(671\) 29.8528 1.15245
\(672\) 0 0
\(673\) 8.50635 0.327896 0.163948 0.986469i \(-0.447577\pi\)
0.163948 + 0.986469i \(0.447577\pi\)
\(674\) −12.4893 7.21070i −0.481070 0.277746i
\(675\) 0 0
\(676\) −9.61494 16.6536i −0.369805 0.640522i
\(677\) 2.54320 4.40495i 0.0977430 0.169296i −0.813007 0.582254i \(-0.802171\pi\)
0.910750 + 0.412958i \(0.135504\pi\)
\(678\) 0 0
\(679\) −9.39552 32.6079i −0.360567 1.25138i
\(680\) 0 0
\(681\) 0 0
\(682\) 9.39601 5.42479i 0.359792 0.207726i
\(683\) 18.1991 10.5073i 0.696370 0.402050i −0.109624 0.993973i \(-0.534965\pi\)
0.805994 + 0.591924i \(0.201631\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −17.5916 + 5.79094i −0.671651 + 0.221099i
\(687\) 0 0
\(688\) 4.27978 7.41279i 0.163165 0.282610i
\(689\) −11.8958 20.6041i −0.453193 0.784953i
\(690\) 0 0
\(691\) −21.5723 12.4548i −0.820649 0.473802i 0.0299912 0.999550i \(-0.490452\pi\)
−0.850640 + 0.525748i \(0.823785\pi\)
\(692\) −1.97623 −0.0751249
\(693\) 0 0
\(694\) −14.4866 −0.549903
\(695\) 0 0
\(696\) 0 0
\(697\) −7.29761 12.6398i −0.276417 0.478767i
\(698\) 1.06241 1.84015i 0.0402129 0.0696508i
\(699\) 0 0
\(700\) 0 0
\(701\) 22.5321i 0.851025i −0.904953 0.425512i \(-0.860094\pi\)
0.904953 0.425512i \(-0.139906\pi\)
\(702\) 0 0
\(703\) −15.2067 + 8.77961i −0.573532 + 0.331129i
\(704\) −2.07577 + 1.19845i −0.0782336 + 0.0451682i
\(705\) 0 0
\(706\) 14.5267i 0.546719i
\(707\) 16.9813 + 16.3565i 0.638647 + 0.615150i
\(708\) 0 0
\(709\) 12.4504 21.5648i 0.467586 0.809882i −0.531728 0.846915i \(-0.678457\pi\)
0.999314 + 0.0370327i \(0.0117906\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.4857 6.63129i −0.430446 0.248518i
\(713\) −8.42726 −0.315603
\(714\) 0 0
\(715\) 0 0
\(716\) 0.768461 + 0.443671i 0.0287187 + 0.0165808i
\(717\) 0 0
\(718\) 1.97485 + 3.42054i 0.0737007 + 0.127653i
\(719\) 19.9241 34.5096i 0.743045 1.28699i −0.208057 0.978117i \(-0.566714\pi\)
0.951103 0.308875i \(-0.0999526\pi\)
\(720\) 0 0
\(721\) −27.7850 6.88967i −1.03477 0.256585i
\(722\) 15.9750i 0.594527i
\(723\) 0 0
\(724\) −4.24329 + 2.44986i −0.157701 + 0.0910485i
\(725\) 0 0
\(726\) 0 0
\(727\) 0.124004i 0.00459906i 0.999997 + 0.00229953i \(0.000731964\pi\)
−0.999997 + 0.00229953i \(0.999268\pi\)
\(728\) 14.4331 4.15870i 0.534926 0.154132i
\(729\) 0 0
\(730\) 0 0
\(731\) 8.86738 + 15.3587i 0.327972 + 0.568064i
\(732\) 0 0
\(733\) −24.7231 14.2739i −0.913168 0.527218i −0.0317189 0.999497i \(-0.510098\pi\)
−0.881449 + 0.472279i \(0.843431\pi\)
\(734\) −27.6927 −1.02216
\(735\) 0 0
\(736\) 1.86175 0.0686252
\(737\) 15.8220 + 9.13483i 0.582811 + 0.336486i
\(738\) 0 0
\(739\) −9.51807 16.4858i −0.350128 0.606439i 0.636144 0.771571i \(-0.280529\pi\)
−0.986272 + 0.165131i \(0.947195\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 10.6543 3.06989i 0.391131 0.112699i
\(743\) 17.0800i 0.626605i 0.949653 + 0.313303i \(0.101435\pi\)
−0.949653 + 0.313303i \(0.898565\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10.5047 + 6.06491i −0.384605 + 0.222052i
\(747\) 0 0
\(748\) 4.96618i 0.181582i
\(749\) −14.3218 3.55129i −0.523308 0.129761i
\(750\) 0 0
\(751\) 8.44463 14.6265i 0.308149 0.533730i −0.669809 0.742534i \(-0.733624\pi\)
0.977957 + 0.208804i \(0.0669572\pi\)
\(752\) −2.78941 4.83140i −0.101719 0.176183i
\(753\) 0 0
\(754\) 24.0376 + 13.8781i 0.875399 + 0.505412i
\(755\) 0 0
\(756\) 0 0
\(757\) 33.4057 1.21415 0.607076 0.794644i \(-0.292342\pi\)
0.607076 + 0.794644i \(0.292342\pi\)
\(758\) −16.1792 9.34106i −0.587655 0.339282i
\(759\) 0 0
\(760\) 0 0
\(761\) −16.3074 + 28.2453i −0.591143 + 1.02389i 0.402935 + 0.915228i \(0.367990\pi\)
−0.994079 + 0.108662i \(0.965343\pi\)
\(762\) 0 0
\(763\) 3.81111 + 3.67089i 0.137971 + 0.132895i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 9.55162 5.51463i 0.345114 0.199252i
\(767\) 9.86379 5.69486i 0.356161 0.205630i
\(768\) 0 0
\(769\) 22.4396i 0.809192i 0.914495 + 0.404596i \(0.132588\pi\)
−0.914495 + 0.404596i \(0.867412\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.74828 + 16.8845i −0.350848 + 0.607687i
\(773\) −19.9165 34.4965i −0.716348 1.24075i −0.962437 0.271505i \(-0.912479\pi\)
0.246089 0.969247i \(-0.420855\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12.8260 −0.460428
\(777\) 0 0
\(778\) 34.3710 1.23226
\(779\) 36.0783 + 20.8298i 1.29264 + 0.746306i
\(780\) 0 0
\(781\) −10.9553 18.9752i −0.392012 0.678985i
\(782\) −1.92871 + 3.34062i −0.0689704 + 0.119460i
\(783\) 0 0
\(784\) 0.262276 + 6.99508i 0.00936701 + 0.249824i
\(785\) 0 0
\(786\) 0 0