Properties

Label 3150.2.b.d
Level $3150$
Weight $2$
Character orbit 3150.b
Analytic conductor $25.153$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3150,2,Mod(251,3150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3150.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(46)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{4} + (\beta_{5} + \beta_{3}) q^{7} + \beta_1 q^{8} - \beta_{4} q^{11} + (\beta_{6} - \beta_{5}) q^{13} + ( - \beta_{4} + \beta_{2}) q^{14} + q^{16} + \beta_{2} q^{17} + ( - \beta_{6} - 2 \beta_{5}) q^{19}+ \cdots + ( - 2 \beta_{7} + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 8 q^{16} + 40 q^{43} + 8 q^{46} - 24 q^{49} + 40 q^{58} - 8 q^{64} - 48 q^{79} + 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 7x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 8\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{4} + 7 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{7} - \nu^{5} + 13\nu^{3} - 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} - \nu^{5} - 13\nu^{3} - 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} + 6\nu^{2} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{7} + \nu^{5} + 29\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{7} + \nu^{5} - 29\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 3\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + \beta_{6} + 2\beta_{4} - 2\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{2} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{7} - 5\beta_{6} - 11\beta_{4} - 11\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4\beta_{5} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{7} - 13\beta_{6} - 29\beta_{4} + 29\beta_{3} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
−1.14412 1.14412i
0.437016 + 0.437016i
1.14412 + 1.14412i
−0.437016 0.437016i
0.437016 0.437016i
−1.14412 + 1.14412i
−0.437016 + 0.437016i
1.14412 1.14412i
1.00000i 0 −1.00000 0 0 −1.41421 2.23607i 1.00000i 0 0
251.2 1.00000i 0 −1.00000 0 0 −1.41421 + 2.23607i 1.00000i 0 0
251.3 1.00000i 0 −1.00000 0 0 1.41421 2.23607i 1.00000i 0 0
251.4 1.00000i 0 −1.00000 0 0 1.41421 + 2.23607i 1.00000i 0 0
251.5 1.00000i 0 −1.00000 0 0 −1.41421 2.23607i 1.00000i 0 0
251.6 1.00000i 0 −1.00000 0 0 −1.41421 + 2.23607i 1.00000i 0 0
251.7 1.00000i 0 −1.00000 0 0 1.41421 2.23607i 1.00000i 0 0
251.8 1.00000i 0 −1.00000 0 0 1.41421 + 2.23607i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 251.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.b.d yes 8
3.b odd 2 1 inner 3150.2.b.d yes 8
5.b even 2 1 3150.2.b.a 8
5.c odd 4 1 3150.2.d.b 8
5.c odd 4 1 3150.2.d.e 8
7.b odd 2 1 inner 3150.2.b.d yes 8
15.d odd 2 1 3150.2.b.a 8
15.e even 4 1 3150.2.d.b 8
15.e even 4 1 3150.2.d.e 8
21.c even 2 1 inner 3150.2.b.d yes 8
35.c odd 2 1 3150.2.b.a 8
35.f even 4 1 3150.2.d.b 8
35.f even 4 1 3150.2.d.e 8
105.g even 2 1 3150.2.b.a 8
105.k odd 4 1 3150.2.d.b 8
105.k odd 4 1 3150.2.d.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3150.2.b.a 8 5.b even 2 1
3150.2.b.a 8 15.d odd 2 1
3150.2.b.a 8 35.c odd 2 1
3150.2.b.a 8 105.g even 2 1
3150.2.b.d yes 8 1.a even 1 1 trivial
3150.2.b.d yes 8 3.b odd 2 1 inner
3150.2.b.d yes 8 7.b odd 2 1 inner
3150.2.b.d yes 8 21.c even 2 1 inner
3150.2.d.b 8 5.c odd 4 1
3150.2.d.b 8 15.e even 4 1
3150.2.d.b 8 35.f even 4 1
3150.2.d.b 8 105.k odd 4 1
3150.2.d.e 8 5.c odd 4 1
3150.2.d.e 8 15.e even 4 1
3150.2.d.e 8 35.f even 4 1
3150.2.d.e 8 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):

\( T_{11}^{2} + 2 \) Copy content Toggle raw display
\( T_{13}^{4} + 30T_{13}^{2} + 25 \) Copy content Toggle raw display
\( T_{17}^{2} - 5 \) Copy content Toggle raw display
\( T_{43}^{2} - 10T_{43} + 23 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 6 T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 30 T^{2} + 25)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 5)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 60 T^{2} + 100)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 86 T^{2} + 49)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 90 T^{2} + 1225)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 90 T^{2} + 1225)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 10 T + 23)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 60 T^{2} + 100)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 102 T^{2} + 2401)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 190 T^{2} + 7225)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 30 T^{2} + 25)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} + 264 T^{2} + 4624)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 220 T^{2} + 4900)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12 T - 14)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 270 T^{2} + 13225)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 240 T^{2} + 1600)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 340 T^{2} + 100)^{2} \) Copy content Toggle raw display
show more
show less