# Properties

 Label 3150.2.a.z Level 3150 Weight 2 Character orbit 3150.a Self dual yes Analytic conductor 25.153 Analytic rank 1 Dimension 1 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ = $$3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 3150.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$25.1528766367$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 630) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} - q^{7} + q^{8} + O(q^{10})$$ $$q + q^{2} + q^{4} - q^{7} + q^{8} - 4q^{13} - q^{14} + q^{16} - 2q^{17} - 8q^{19} + 8q^{23} - 4q^{26} - q^{28} - 8q^{29} + 4q^{31} + q^{32} - 2q^{34} + 8q^{37} - 8q^{38} - 12q^{41} - 8q^{43} + 8q^{46} - 4q^{47} + q^{49} - 4q^{52} - 6q^{53} - q^{56} - 8q^{58} - 8q^{59} - 6q^{61} + 4q^{62} + q^{64} - 8q^{67} - 2q^{68} + 4q^{73} + 8q^{74} - 8q^{76} + 8q^{79} - 12q^{82} - 8q^{86} + 4q^{89} + 4q^{91} + 8q^{92} - 4q^{94} + 12q^{97} + q^{98} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 0 0 −1.00000 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.a.z 1
3.b odd 2 1 3150.2.a.e 1
5.b even 2 1 3150.2.a.p 1
5.c odd 4 2 630.2.g.f yes 2
15.d odd 2 1 3150.2.a.bn 1
15.e even 4 2 630.2.g.a 2
20.e even 4 2 5040.2.t.q 2
60.l odd 4 2 5040.2.t.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.g.a 2 15.e even 4 2
630.2.g.f yes 2 5.c odd 4 2
3150.2.a.e 1 3.b odd 2 1
3150.2.a.p 1 5.b even 2 1
3150.2.a.z 1 1.a even 1 1 trivial
3150.2.a.bn 1 15.d odd 2 1
5040.2.t.b 2 60.l odd 4 2
5040.2.t.q 2 20.e even 4 2

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$-1$$
$$7$$ $$1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3150))$$:

 $$T_{11}$$ $$T_{13} + 4$$ $$T_{17} + 2$$ $$T_{19} + 8$$ $$T_{29} + 8$$

## Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ $$1 - T$$
$3$ 1
$5$ 1
$7$ $$1 + T$$
$11$ $$1 + 11 T^{2}$$
$13$ $$1 + 4 T + 13 T^{2}$$
$17$ $$1 + 2 T + 17 T^{2}$$
$19$ $$1 + 8 T + 19 T^{2}$$
$23$ $$1 - 8 T + 23 T^{2}$$
$29$ $$1 + 8 T + 29 T^{2}$$
$31$ $$1 - 4 T + 31 T^{2}$$
$37$ $$1 - 8 T + 37 T^{2}$$
$41$ $$1 + 12 T + 41 T^{2}$$
$43$ $$1 + 8 T + 43 T^{2}$$
$47$ $$1 + 4 T + 47 T^{2}$$
$53$ $$1 + 6 T + 53 T^{2}$$
$59$ $$1 + 8 T + 59 T^{2}$$
$61$ $$1 + 6 T + 61 T^{2}$$
$67$ $$1 + 8 T + 67 T^{2}$$
$71$ $$1 + 71 T^{2}$$
$73$ $$1 - 4 T + 73 T^{2}$$
$79$ $$1 - 8 T + 79 T^{2}$$
$83$ $$1 + 83 T^{2}$$
$89$ $$1 - 4 T + 89 T^{2}$$
$97$ $$1 - 12 T + 97 T^{2}$$