Properties

Label 3150.2.a.be.1.1
Level 3150
Weight 2
Character 3150.1
Self dual yes
Analytic conductor 25.153
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 3150.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{7} +1.00000 q^{8} +2.00000 q^{11} -2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +8.00000 q^{17} -2.00000 q^{19} +2.00000 q^{22} -2.00000 q^{26} -1.00000 q^{28} +6.00000 q^{29} +6.00000 q^{31} +1.00000 q^{32} +8.00000 q^{34} -8.00000 q^{37} -2.00000 q^{38} -6.00000 q^{41} -8.00000 q^{43} +2.00000 q^{44} +4.00000 q^{47} +1.00000 q^{49} -2.00000 q^{52} -2.00000 q^{53} -1.00000 q^{56} +6.00000 q^{58} +8.00000 q^{59} +10.0000 q^{61} +6.00000 q^{62} +1.00000 q^{64} +12.0000 q^{67} +8.00000 q^{68} +14.0000 q^{71} +10.0000 q^{73} -8.00000 q^{74} -2.00000 q^{76} -2.00000 q^{77} +4.00000 q^{79} -6.00000 q^{82} +16.0000 q^{83} -8.00000 q^{86} +2.00000 q^{88} -10.0000 q^{89} +2.00000 q^{91} +4.00000 q^{94} -10.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 8.00000 1.94029 0.970143 0.242536i \(-0.0779791\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 8.00000 1.37199
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 8.00000 0.970143
\(69\) 0 0
\(70\) 0 0
\(71\) 14.0000 1.66149 0.830747 0.556650i \(-0.187914\pi\)
0.830747 + 0.556650i \(0.187914\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 10.0000 0.905357
\(123\) 0 0
\(124\) 6.00000 0.538816
\(125\) 0 0
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) 2.00000 0.173422
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 8.00000 0.685994
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 14.0000 1.17485
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) 0 0
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000 0.150756
\(177\) 0 0
\(178\) −10.0000 −0.749532
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 2.00000 0.148250
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 16.0000 1.17004
\(188\) 4.00000 0.291730
\(189\) 0 0
\(190\) 0 0
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −26.0000 −1.84309 −0.921546 0.388270i \(-0.873073\pi\)
−0.921546 + 0.388270i \(0.873073\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.0000 0.703598
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −2.00000 −0.137361
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) −6.00000 −0.406371
\(219\) 0 0
\(220\) 0 0
\(221\) −16.0000 −1.07628
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 0 0
\(229\) 26.0000 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) −8.00000 −0.518563
\(239\) 22.0000 1.42306 0.711531 0.702655i \(-0.248002\pi\)
0.711531 + 0.702655i \(0.248002\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.0000 −1.24757 −0.623783 0.781598i \(-0.714405\pi\)
−0.623783 + 0.781598i \(0.714405\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.00000 0.122628
\(267\) 0 0
\(268\) 12.0000 0.733017
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 8.00000 0.485071
\(273\) 0 0
\(274\) −14.0000 −0.845771
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) −2.00000 −0.119952
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 14.0000 0.830747
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) 47.0000 2.76471
\(290\) 0 0
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 18.0000 1.04271
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) −2.00000 −0.114708
\(305\) 0 0
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) −2.00000 −0.113961
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 16.0000 0.878114
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) 0 0
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) −16.0000 −0.860165
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 2.00000 0.105703
\(359\) −14.0000 −0.738892 −0.369446 0.929252i \(-0.620452\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 22.0000 1.15629
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00000 0.103835
\(372\) 0 0
\(373\) −36.0000 −1.86401 −0.932005 0.362446i \(-0.881942\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 16.0000 0.827340
\(375\) 0 0
\(376\) 4.00000 0.206284
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −14.0000 −0.716302
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −26.0000 −1.30326
\(399\) 0 0
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −12.0000 −0.597763
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) −16.0000 −0.793091
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) −4.00000 −0.195646
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) −2.00000 −0.0971286
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) −6.00000 −0.288009
\(435\) 0 0
\(436\) −6.00000 −0.287348
\(437\) 0 0
\(438\) 0 0
\(439\) 6.00000 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −16.0000 −0.761042
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) −8.00000 −0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) 26.0000 1.21490
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 12.0000 0.557687 0.278844 0.960337i \(-0.410049\pi\)
0.278844 + 0.960337i \(0.410049\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 16.0000 0.740392 0.370196 0.928954i \(-0.379291\pi\)
0.370196 + 0.928954i \(0.379291\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 8.00000 0.368230
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) 0 0
\(478\) 22.0000 1.00626
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) −36.0000 −1.63132 −0.815658 0.578535i \(-0.803625\pi\)
−0.815658 + 0.578535i \(0.803625\pi\)
\(488\) 10.0000 0.452679
\(489\) 0 0
\(490\) 0 0
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) 0 0
\(493\) 48.0000 2.16181
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) −14.0000 −0.627986
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −12.0000 −0.532414
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) 0 0
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) 8.00000 0.351500
\(519\) 0 0
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 12.0000 0.524723 0.262362 0.964970i \(-0.415499\pi\)
0.262362 + 0.964970i \(0.415499\pi\)
\(524\) 20.0000 0.873704
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) −14.0000 −0.603583
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 2.00000 0.0859074
\(543\) 0 0
\(544\) 8.00000 0.342997
\(545\) 0 0
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) −14.0000 −0.598050
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 8.00000 0.339887
\(555\) 0 0
\(556\) −2.00000 −0.0848189
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 14.0000 0.587427
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 0 0
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 47.0000 1.95494
\(579\) 0 0
\(580\) 0 0
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) −16.0000 −0.660954
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) −32.0000 −1.31408 −0.657041 0.753855i \(-0.728192\pi\)
−0.657041 + 0.753855i \(0.728192\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 0 0
\(599\) −14.0000 −0.572024 −0.286012 0.958226i \(-0.592330\pi\)
−0.286012 + 0.958226i \(0.592330\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 8.00000 0.326056
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) −32.0000 −1.29247 −0.646234 0.763139i \(-0.723657\pi\)
−0.646234 + 0.763139i \(0.723657\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) −2.00000 −0.0805823
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −18.0000 −0.723481 −0.361741 0.932279i \(-0.617817\pi\)
−0.361741 + 0.932279i \(0.617817\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 8.00000 0.320771
\(623\) 10.0000 0.400642
\(624\) 0 0
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) 10.0000 0.399043
\(629\) −64.0000 −2.55185
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) 16.0000 0.629025 0.314512 0.949253i \(-0.398159\pi\)
0.314512 + 0.949253i \(0.398159\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −4.00000 −0.155936
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −8.00000 −0.309529
\(669\) 0 0
\(670\) 0 0
\(671\) 20.0000 0.772091
\(672\) 0 0
\(673\) −12.0000 −0.462566 −0.231283 0.972887i \(-0.574292\pi\)
−0.231283 + 0.972887i \(0.574292\pi\)
\(674\) −32.0000 −1.23259
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) 0 0
\(682\) 12.0000 0.459504
\(683\) 28.0000 1.07139 0.535695 0.844411i \(-0.320050\pi\)
0.535695 + 0.844411i \(0.320050\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −8.00000 −0.304997
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) −14.0000 −0.532585 −0.266293 0.963892i \(-0.585799\pi\)
−0.266293 + 0.963892i \(0.585799\pi\)
\(692\) −16.0000 −0.608229
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) −48.0000 −1.81813
\(698\) 18.0000 0.681310
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0000 −0.376089
\(708\) 0 0
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −10.0000 −0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 0.0747435
\(717\) 0 0
\(718\) −14.0000 −0.522475
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.0000 −0.558242
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) 0 0
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 2.00000 0.0741249
\(729\) 0 0
\(730\) 0 0
\(731\) −64.0000 −2.36713
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) 32.0000 1.18114
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2.00000 0.0734223
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −36.0000 −1.31805
\(747\) 0 0
\(748\) 16.0000 0.585018
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 4.00000 0.145865
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) 0 0
\(757\) 4.00000 0.145382 0.0726912 0.997354i \(-0.476841\pi\)
0.0726912 + 0.997354i \(0.476841\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 6.00000 0.217215
\(764\) −14.0000 −0.506502
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 0 0
\(769\) −42.0000 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 44.0000 1.56843 0.784215 0.620489i \(-0.213066\pi\)
0.784215 + 0.620489i \(0.213066\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) −26.0000 −0.921546
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) 0 0
\(801\) 0 0
\(802\) −18.0000 −0.635602
\(803\) 20.0000 0.705785
\(804\) 0 0
\(805\) 0 0
\(806\) −12.0000 −0.422682
\(807\) 0 0
\(808\) 10.0000 0.351799
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) −6.00000 −0.210559
\(813\) 0 0
\(814\) −16.0000 −0.560800
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −8.00000 −0.278356
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 8.00000 0.277184
\(834\) 0 0
\(835\) 0 0
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) −44.0000 −1.51905 −0.759524 0.650479i \(-0.774568\pi\)
−0.759524 + 0.650479i \(0.774568\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 10.0000 0.344623
\(843\) 0 0
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) −2.00000 −0.0686803
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) −10.0000 −0.342193
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 20.0000 0.683187 0.341593 0.939848i \(-0.389033\pi\)
0.341593 + 0.939848i \(0.389033\pi\)
\(858\) 0 0
\(859\) −6.00000 −0.204717 −0.102359 0.994748i \(-0.532639\pi\)
−0.102359 + 0.994748i \(0.532639\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 6.00000 0.204361
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −26.0000 −0.883516
\(867\) 0 0
\(868\) −6.00000 −0.203653
\(869\) 8.00000 0.271381
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 48.0000 1.62084 0.810422 0.585846i \(-0.199238\pi\)
0.810422 + 0.585846i \(0.199238\pi\)
\(878\) 6.00000 0.202490
\(879\) 0 0
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) −16.0000 −0.538138
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) 36.0000 1.20876 0.604381 0.796696i \(-0.293421\pi\)
0.604381 + 0.796696i \(0.293421\pi\)
\(888\) 0 0
\(889\) 12.0000 0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 16.0000 0.535720
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 30.0000 1.00111
\(899\) 36.0000 1.20067
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) −12.0000 −0.399556
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) −8.00000 −0.265489
\(909\) 0 0
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 32.0000 1.05905
\(914\) 28.0000 0.926158
\(915\) 0 0
\(916\) 26.0000 0.859064
\(917\) −20.0000 −0.660458
\(918\) 0 0
\(919\) −4.00000 −0.131948 −0.0659739 0.997821i \(-0.521015\pi\)
−0.0659739 + 0.997821i \(0.521015\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −18.0000 −0.592798
\(923\) −28.0000 −0.921631
\(924\) 0 0
\(925\) 0 0
\(926\) 12.0000 0.394344
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −2.00000 −0.0655474
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 16.0000 0.523536
\(935\) 0 0
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) −12.0000 −0.391814
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) 0 0
\(952\) −8.00000 −0.259281
\(953\) −18.0000 −0.583077 −0.291539 0.956559i \(-0.594167\pi\)
−0.291539 + 0.956559i \(0.594167\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 22.0000 0.711531
\(957\) 0 0
\(958\) −8.00000 −0.258468
\(959\) 14.0000 0.452084
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 16.0000 0.515861
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) 0 0
\(966\) 0 0
\(967\) 24.0000 0.771788 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 2.00000 0.0641171
\(974\) −36.0000 −1.15351
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 0 0
\(982\) 42.0000 1.34027
\(983\) 12.0000 0.382741 0.191370 0.981518i \(-0.438707\pi\)
0.191370 + 0.981518i \(0.438707\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 48.0000 1.52863
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) 0 0
\(990\) 0 0
\(991\) −60.0000 −1.90596 −0.952981 0.303029i \(-0.902002\pi\)
−0.952981 + 0.303029i \(0.902002\pi\)
\(992\) 6.00000 0.190500
\(993\) 0 0
\(994\) −14.0000 −0.444053
\(995\) 0 0
\(996\) 0 0
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) −28.0000 −0.886325
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.a.be.1.1 1
3.2 odd 2 1050.2.a.g.1.1 1
5.2 odd 4 630.2.g.d.379.2 2
5.3 odd 4 630.2.g.d.379.1 2
5.4 even 2 3150.2.a.q.1.1 1
12.11 even 2 8400.2.a.bd.1.1 1
15.2 even 4 210.2.g.a.169.1 2
15.8 even 4 210.2.g.a.169.2 yes 2
15.14 odd 2 1050.2.a.m.1.1 1
20.3 even 4 5040.2.t.k.1009.1 2
20.7 even 4 5040.2.t.k.1009.2 2
21.20 even 2 7350.2.a.g.1.1 1
60.23 odd 4 1680.2.t.d.1009.1 2
60.47 odd 4 1680.2.t.d.1009.2 2
60.59 even 2 8400.2.a.ca.1.1 1
105.2 even 12 1470.2.n.g.949.1 4
105.17 odd 12 1470.2.n.c.79.2 4
105.23 even 12 1470.2.n.g.949.2 4
105.32 even 12 1470.2.n.g.79.2 4
105.38 odd 12 1470.2.n.c.79.1 4
105.47 odd 12 1470.2.n.c.949.1 4
105.53 even 12 1470.2.n.g.79.1 4
105.62 odd 4 1470.2.g.e.589.1 2
105.68 odd 12 1470.2.n.c.949.2 4
105.83 odd 4 1470.2.g.e.589.2 2
105.104 even 2 7350.2.a.co.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.g.a.169.1 2 15.2 even 4
210.2.g.a.169.2 yes 2 15.8 even 4
630.2.g.d.379.1 2 5.3 odd 4
630.2.g.d.379.2 2 5.2 odd 4
1050.2.a.g.1.1 1 3.2 odd 2
1050.2.a.m.1.1 1 15.14 odd 2
1470.2.g.e.589.1 2 105.62 odd 4
1470.2.g.e.589.2 2 105.83 odd 4
1470.2.n.c.79.1 4 105.38 odd 12
1470.2.n.c.79.2 4 105.17 odd 12
1470.2.n.c.949.1 4 105.47 odd 12
1470.2.n.c.949.2 4 105.68 odd 12
1470.2.n.g.79.1 4 105.53 even 12
1470.2.n.g.79.2 4 105.32 even 12
1470.2.n.g.949.1 4 105.2 even 12
1470.2.n.g.949.2 4 105.23 even 12
1680.2.t.d.1009.1 2 60.23 odd 4
1680.2.t.d.1009.2 2 60.47 odd 4
3150.2.a.q.1.1 1 5.4 even 2
3150.2.a.be.1.1 1 1.1 even 1 trivial
5040.2.t.k.1009.1 2 20.3 even 4
5040.2.t.k.1009.2 2 20.7 even 4
7350.2.a.g.1.1 1 21.20 even 2
7350.2.a.co.1.1 1 105.104 even 2
8400.2.a.bd.1.1 1 12.11 even 2
8400.2.a.ca.1.1 1 60.59 even 2