Properties

Label 3150.2.a
Level $3150$
Weight $2$
Character orbit 3150.a
Rep. character $\chi_{3150}(1,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $46$
Sturm bound $1440$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 46 \)
Sturm bound: \(1440\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\), \(19\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3150))\).

Total New Old
Modular forms 768 48 720
Cusp forms 673 48 625
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(+\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(3\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(5\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(21\)
Minus space\(-\)\(27\)

Trace form

\( 48 q + 2 q^{2} + 48 q^{4} + 2 q^{8} + O(q^{10}) \) \( 48 q + 2 q^{2} + 48 q^{4} + 2 q^{8} - 8 q^{11} - 10 q^{13} - 2 q^{14} + 48 q^{16} - 4 q^{17} - 18 q^{19} - 12 q^{22} - 16 q^{23} - 18 q^{26} - 12 q^{29} + 4 q^{31} + 2 q^{32} - 28 q^{34} + 12 q^{37} - 18 q^{38} - 40 q^{41} - 4 q^{43} - 8 q^{44} - 8 q^{46} - 20 q^{47} + 48 q^{49} - 10 q^{52} + 16 q^{53} - 2 q^{56} + 8 q^{58} + 14 q^{59} - 10 q^{61} + 12 q^{62} + 48 q^{64} - 8 q^{67} - 4 q^{68} + 80 q^{71} + 8 q^{73} - 40 q^{74} - 18 q^{76} + 12 q^{77} + 16 q^{79} + 32 q^{82} + 18 q^{83} + 28 q^{86} - 12 q^{88} + 100 q^{89} + 18 q^{91} - 16 q^{92} + 12 q^{94} + 20 q^{97} + 2 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3150))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7
3150.2.a.a 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-6q^{11}+q^{13}+\cdots\)
3150.2.a.b 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-4q^{11}-3q^{13}+\cdots\)
3150.2.a.c 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-2q^{11}+q^{13}+\cdots\)
3150.2.a.d 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-2q^{11}+6q^{13}+\cdots\)
3150.2.a.e 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-4q^{13}+q^{14}+\cdots\)
3150.2.a.f 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-2q^{13}+q^{14}+\cdots\)
3150.2.a.g 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}-2q^{13}+q^{14}+\cdots\)
3150.2.a.h 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}+q^{13}+q^{14}+\cdots\)
3150.2.a.i 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}+4q^{13}+q^{14}+\cdots\)
3150.2.a.j 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}+5q^{11}-6q^{13}+\cdots\)
3150.2.a.k 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(-1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{7}-q^{8}+6q^{11}+2q^{13}+\cdots\)
3150.2.a.l 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-6q^{11}-2q^{13}+\cdots\)
3150.2.a.m 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-3q^{11}+2q^{13}+\cdots\)
3150.2.a.n 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-2q^{11}-q^{13}+\cdots\)
3150.2.a.o 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}-q^{13}-q^{14}+\cdots\)
3150.2.a.p 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+4q^{13}-q^{14}+\cdots\)
3150.2.a.q 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+2q^{11}+2q^{13}+\cdots\)
3150.2.a.r 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+2q^{11}+7q^{13}+\cdots\)
3150.2.a.s 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+4q^{11}-6q^{13}+\cdots\)
3150.2.a.t 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+4q^{11}+2q^{13}+\cdots\)
3150.2.a.u 3150.a 1.a $1$ $25.153$ \(\Q\) None \(-1\) \(0\) \(0\) \(1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+4q^{11}+3q^{13}+\cdots\)
3150.2.a.v 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-6q^{11}+2q^{13}+\cdots\)
3150.2.a.w 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-4q^{11}+2q^{13}+\cdots\)
3150.2.a.x 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-3q^{11}-2q^{13}+\cdots\)
3150.2.a.y 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-2q^{11}+q^{13}+\cdots\)
3150.2.a.z 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-4q^{13}-q^{14}+\cdots\)
3150.2.a.ba 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-2q^{13}-q^{14}+\cdots\)
3150.2.a.bb 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}-2q^{13}-q^{14}+\cdots\)
3150.2.a.bc 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+q^{13}-q^{14}+\cdots\)
3150.2.a.bd 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+2q^{11}-7q^{13}+\cdots\)
3150.2.a.be 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+2q^{11}-2q^{13}+\cdots\)
3150.2.a.bf 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+4q^{11}-3q^{13}+\cdots\)
3150.2.a.bg 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-6q^{11}-q^{13}+\cdots\)
3150.2.a.bh 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-4q^{11}-6q^{13}+\cdots\)
3150.2.a.bi 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-4q^{11}+3q^{13}+\cdots\)
3150.2.a.bj 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-4q^{11}+6q^{13}+\cdots\)
3150.2.a.bk 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-2q^{11}-6q^{13}+\cdots\)
3150.2.a.bl 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-2q^{11}-q^{13}+\cdots\)
3150.2.a.bm 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-q^{13}+q^{14}+\cdots\)
3150.2.a.bn 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+4q^{13}+q^{14}+\cdots\)
3150.2.a.bo 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+4q^{11}-6q^{13}+\cdots\)
3150.2.a.bp 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+4q^{11}+2q^{13}+\cdots\)
3150.2.a.bq 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+5q^{11}+6q^{13}+\cdots\)
3150.2.a.br 3150.a 1.a $1$ $25.153$ \(\Q\) None \(1\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}+6q^{11}-2q^{13}+\cdots\)
3150.2.a.bs 3150.a 1.a $2$ $25.153$ \(\Q(\sqrt{6}) \) None \(-2\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{7}-q^{8}+2\beta q^{11}+(-2+\cdots)q^{13}+\cdots\)
3150.2.a.bt 3150.a 1.a $2$ $25.153$ \(\Q(\sqrt{6}) \) None \(2\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+2\beta q^{11}+(2+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3150))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3150)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(315))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(630))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1575))\)\(^{\oplus 2}\)