Properties

Label 315.8.p
Level $315$
Weight $8$
Character orbit 315.p
Rep. character $\chi_{315}(118,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $276$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 688 284 404
Cusp forms 656 276 380
Eisenstein series 32 8 24

Trace form

\( 276 q + 4 q^{2} - 956 q^{7} + 1496 q^{8} + 11972 q^{11} - 1017720 q^{16} + 110972 q^{22} + 173648 q^{23} - 129536 q^{25} + 637328 q^{28} - 14448 q^{32} + 397308 q^{35} - 272792 q^{37} + 1921060 q^{43} - 761424 q^{46}+ \cdots + 50134836 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)