Properties

Label 315.8.k
Level $315$
Weight $8$
Character orbit 315.k
Rep. character $\chi_{315}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $448$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.k (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 680 448 232
Cusp forms 664 448 216
Eisenstein series 16 0 16

Trace form

\( 448 q - 14336 q^{4} - 1000 q^{5} - 928 q^{6} + 166 q^{7} - 180 q^{9} - 5908 q^{11} + 18460 q^{12} - 3694 q^{13} - 66924 q^{14} + 1750 q^{15} - 917504 q^{16} + 78608 q^{17} - 38316 q^{18} + 44684 q^{19}+ \cdots + 9411390 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)