Properties

Label 315.8.j
Level $315$
Weight $8$
Character orbit 315.j
Rep. character $\chi_{315}(46,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $188$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 688 188 500
Cusp forms 656 188 468
Eisenstein series 32 0 32

Trace form

\( 188 q - 14 q^{2} - 5962 q^{4} - 250 q^{5} - 1058 q^{7} + 2436 q^{8} + 2000 q^{10} + 3264 q^{11} - 25072 q^{13} + 25670 q^{14} - 365118 q^{16} - 18636 q^{17} + 9516 q^{19} + 55000 q^{20} + 128 q^{22} + 24830 q^{23}+ \cdots + 61888442 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)