Properties

Label 315.8.i
Level $315$
Weight $8$
Character orbit 315.i
Rep. character $\chi_{315}(106,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $336$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 680 336 344
Cusp forms 664 336 328
Eisenstein series 16 0 16

Trace form

\( 336 q - 32 q^{2} + 52 q^{3} - 10752 q^{4} - 1724 q^{6} + 22680 q^{8} + 7856 q^{9} - 3678 q^{11} + 28104 q^{12} - 1750 q^{15} - 688128 q^{16} - 143832 q^{17} - 204908 q^{18} + 8376 q^{19} - 28126 q^{21}+ \cdots + 9769000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)