Properties

Label 315.8.d
Level $315$
Weight $8$
Character orbit 315.d
Rep. character $\chi_{315}(64,\cdot)$
Character field $\Q$
Dimension $106$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 344 106 238
Cusp forms 328 106 222
Eisenstein series 16 0 16

Trace form

\( 106 q - 6860 q^{4} - 588 q^{5} + 5384 q^{10} - 13602 q^{11} + 10976 q^{14} + 464012 q^{16} + 32256 q^{19} + 134408 q^{20} - 159042 q^{25} - 719740 q^{26} + 276614 q^{29} - 56140 q^{31} + 389764 q^{34} - 29498 q^{35}+ \cdots - 40693552 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)