Properties

Label 315.8.ce
Level $315$
Weight $8$
Character orbit 315.ce
Rep. character $\chi_{315}(53,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $448$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 1376 448 928
Cusp forms 1312 448 864
Eisenstein series 64 0 64

Trace form

\( 448 q + 2696 q^{7} - 832 q^{10} + 917504 q^{16} + 234624 q^{22} - 263536 q^{25} - 595136 q^{28} - 56416 q^{31} + 329168 q^{37} + 2183960 q^{40} + 1098032 q^{43} - 11820560 q^{52} - 11397152 q^{55} + 15218576 q^{58}+ \cdots - 343184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)