Properties

Label 315.8.cc
Level $315$
Weight $8$
Character orbit 315.cc
Rep. character $\chi_{315}(92,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1008$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.cc (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 1360 1008 352
Cusp forms 1328 1008 320
Eisenstein series 32 0 32

Trace form

\( 1008 q + 52 q^{3} - 17724 q^{11} - 13312 q^{12} + 49936 q^{15} + 2064384 q^{16} + 172088 q^{18} + 218112 q^{20} + 56252 q^{21} + 6888 q^{23} + 143988 q^{25} + 978016 q^{27} + 434980 q^{30} - 617820 q^{32}+ \cdots - 35235420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)