Properties

Label 315.8.bj
Level $315$
Weight $8$
Character orbit 315.bj
Rep. character $\chi_{315}(26,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $152$
Sturm bound $384$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.bj (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(384\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(315, [\chi])\).

Total New Old
Modular forms 688 152 536
Cusp forms 656 152 504
Eisenstein series 32 0 32

Trace form

\( 152 q + 5120 q^{4} + 1452 q^{7} - 339336 q^{16} + 95772 q^{19} - 235712 q^{22} - 1187500 q^{25} + 517960 q^{28} - 250308 q^{31} - 852900 q^{37} + 2772696 q^{43} - 2072168 q^{46} - 6187876 q^{49} + 22171800 q^{52}+ \cdots - 81630336 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(315, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(315, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(315, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)