Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [315,8,Mod(251,315)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(315, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("315.251");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(98.4012830275\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
251.1 | − | 21.8020i | 0 | −347.326 | −125.000 | 0 | −420.595 | − | 804.141i | 4781.73i | 0 | 2725.25i | |||||||||||||||
251.2 | − | 20.8373i | 0 | −306.192 | −125.000 | 0 | −776.826 | + | 469.131i | 3713.03i | 0 | 2604.66i | |||||||||||||||
251.3 | − | 19.6445i | 0 | −257.906 | −125.000 | 0 | 176.401 | − | 890.183i | 2551.94i | 0 | 2455.56i | |||||||||||||||
251.4 | − | 18.6170i | 0 | −218.591 | −125.000 | 0 | 906.053 | + | 51.1032i | 1686.53i | 0 | 2327.12i | |||||||||||||||
251.5 | − | 17.2579i | 0 | −169.836 | −125.000 | 0 | 678.561 | + | 602.576i | 722.000i | 0 | 2157.24i | |||||||||||||||
251.6 | − | 16.6252i | 0 | −148.397 | −125.000 | 0 | −749.494 | + | 511.666i | 339.111i | 0 | 2078.15i | |||||||||||||||
251.7 | − | 16.2847i | 0 | −137.191 | −125.000 | 0 | −907.402 | + | 12.8416i | 149.667i | 0 | 2035.58i | |||||||||||||||
251.8 | − | 13.4946i | 0 | −54.1036 | −125.000 | 0 | −238.879 | + | 875.488i | − | 997.200i | 0 | 1686.82i | ||||||||||||||
251.9 | − | 13.1741i | 0 | −45.5578 | −125.000 | 0 | 599.562 | − | 681.225i | − | 1086.10i | 0 | 1646.77i | ||||||||||||||
251.10 | − | 11.1415i | 0 | 3.86589 | −125.000 | 0 | 40.2068 | − | 906.602i | − | 1469.19i | 0 | 1392.69i | ||||||||||||||
251.11 | − | 10.1889i | 0 | 24.1857 | −125.000 | 0 | 817.883 | − | 393.204i | − | 1550.61i | 0 | 1273.62i | ||||||||||||||
251.12 | − | 9.96079i | 0 | 28.7827 | −125.000 | 0 | 766.665 | + | 485.559i | − | 1561.68i | 0 | 1245.10i | ||||||||||||||
251.13 | − | 8.97766i | 0 | 47.4015 | −125.000 | 0 | −783.882 | − | 457.244i | − | 1574.70i | 0 | 1122.21i | ||||||||||||||
251.14 | − | 5.28772i | 0 | 100.040 | −125.000 | 0 | −322.098 | + | 848.408i | − | 1205.81i | 0 | 660.965i | ||||||||||||||
251.15 | − | 5.21139i | 0 | 100.841 | −125.000 | 0 | −839.402 | + | 344.886i | − | 1192.58i | 0 | 651.424i | ||||||||||||||
251.16 | − | 5.04326i | 0 | 102.566 | −125.000 | 0 | 787.697 | + | 450.639i | − | 1162.80i | 0 | 630.407i | ||||||||||||||
251.17 | − | 1.17691i | 0 | 126.615 | −125.000 | 0 | −415.490 | − | 806.790i | − | 299.658i | 0 | 147.113i | ||||||||||||||
251.18 | − | 1.09451i | 0 | 126.802 | −125.000 | 0 | 235.038 | − | 876.527i | − | 278.884i | 0 | 136.814i | ||||||||||||||
251.19 | 1.09451i | 0 | 126.802 | −125.000 | 0 | 235.038 | + | 876.527i | 278.884i | 0 | − | 136.814i | |||||||||||||||
251.20 | 1.17691i | 0 | 126.615 | −125.000 | 0 | −415.490 | + | 806.790i | 299.658i | 0 | − | 147.113i | |||||||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.8.b.a | ✓ | 36 |
3.b | odd | 2 | 1 | 315.8.b.b | yes | 36 | |
7.b | odd | 2 | 1 | 315.8.b.b | yes | 36 | |
21.c | even | 2 | 1 | inner | 315.8.b.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
315.8.b.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
315.8.b.a | ✓ | 36 | 21.c | even | 2 | 1 | inner |
315.8.b.b | yes | 36 | 3.b | odd | 2 | 1 | |
315.8.b.b | yes | 36 | 7.b | odd | 2 | 1 |