Properties

Label 315.8.a.n
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 570x^{4} - 276x^{3} + 67464x^{2} + 110400x - 1253696 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 4) q^{2} + (\beta_{2} - 3 \beta_1 + 77) q^{4} + 125 q^{5} - 343 q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots - 486) q^{8} + (125 \beta_1 - 500) q^{10} + (\beta_{5} - 18 \beta_{2} - 49 \beta_1 - 689) q^{11}+ \cdots + (117649 \beta_1 - 470596) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 21 q^{2} + 453 q^{4} + 750 q^{5} - 2058 q^{7} - 2667 q^{8} - 2625 q^{10} - 4284 q^{11} + 840 q^{13} + 7203 q^{14} + 48609 q^{16} + 16188 q^{17} - 17892 q^{19} + 56625 q^{20} - 35808 q^{22} + 9072 q^{23}+ \cdots - 2470629 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 570x^{4} - 276x^{3} + 67464x^{2} + 110400x - 1253696 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5\nu - 189 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 5\nu^{4} - 496\nu^{3} + 524\nu^{2} + 38320\nu + 14176 ) / 96 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 9\nu^{3} - 424\nu^{2} + 1668\nu + 22024 ) / 12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 13\nu^{4} + 520\nu^{3} - 4588\nu^{2} - 55312\nu + 210112 ) / 96 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5\beta _1 + 189 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{3} + 7\beta_{2} + 351\beta _1 + 822 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{5} + 3\beta_{4} + 9\beta_{3} + 487\beta_{2} + 3611\beta _1 + 65510 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 541\beta_{5} - 481\beta_{4} + 637\beta_{3} + 5383\beta_{2} + 151211\beta _1 + 622050 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−17.9671
−10.9234
−6.32873
3.78638
11.7546
22.6783
−21.9671 0 354.553 125.000 0 −343.000 −4976.71 0 −2745.89
1.2 −14.9234 0 94.7076 125.000 0 −343.000 496.836 0 −1865.42
1.3 −10.3287 0 −21.3173 125.000 0 −343.000 1542.26 0 −1291.09
1.4 −0.213623 0 −127.954 125.000 0 −343.000 54.6777 0 −26.7029
1.5 7.75456 0 −67.8668 125.000 0 −343.000 −1518.86 0 969.320
1.6 18.6783 0 220.878 125.000 0 −343.000 1734.80 0 2334.78
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.n 6
3.b odd 2 1 315.8.a.o yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.8.a.n 6 1.a even 1 1 trivial
315.8.a.o yes 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 21T_{2}^{5} - 390T_{2}^{4} - 8596T_{2}^{3} + 11352T_{2}^{2} + 493248T_{2} + 104768 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 21 T^{5} + \cdots + 104768 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T - 125)^{6} \) Copy content Toggle raw display
$7$ \( (T + 343)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 36\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 94\!\cdots\!68 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 38\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 20\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 16\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 24\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 27\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 37\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 53\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 83\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 15\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 17\!\cdots\!32 \) Copy content Toggle raw display
show more
show less