Properties

Label 315.8.a.m
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 584x^{3} + 2550x^{2} + 46220x - 155664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{2} + (\beta_{3} - \beta_1 + 111) q^{4} - 125 q^{5} + 343 q^{7} + ( - \beta_{4} - 7 \beta_{2} + \cdots + 358) q^{8} + (125 \beta_1 + 250) q^{10} + ( - \beta_{4} + 8 \beta_{3} + \cdots - 2023) q^{11}+ \cdots + ( - 117649 \beta_1 - 235298) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 11 q^{2} + 553 q^{4} - 625 q^{5} + 1715 q^{7} + 1647 q^{8} + 1375 q^{10} - 10027 q^{11} + 16141 q^{13} - 3773 q^{14} + 94169 q^{16} - 17427 q^{17} + 44394 q^{19} - 69125 q^{20} - 89168 q^{22} - 55698 q^{23}+ \cdots - 1294139 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 584x^{3} + 2550x^{2} + 46220x - 155664 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 29\nu^{3} + 716\nu^{2} - 12922\nu - 32740 ) / 236 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5\nu - 235 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 7\nu^{4} + 33\nu^{3} - 3596\nu^{2} - 878\nu + 194724 ) / 236 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5\beta _1 + 235 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - 6\beta_{3} + 7\beta_{2} + 417\beta _1 - 1264 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 29\beta_{4} + 542\beta_{3} - 33\beta_{2} - 4409\beta _1 + 98864 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.1208
11.6859
3.21232
−9.04671
−23.9723
−21.1208 0 318.088 −125.000 0 343.000 −4014.82 0 2640.10
1.2 −13.6859 0 59.3043 −125.000 0 343.000 940.164 0 1710.74
1.3 −5.21232 0 −100.832 −125.000 0 343.000 1192.74 0 651.540
1.4 7.04671 0 −78.3439 −125.000 0 343.000 −1454.05 0 −880.839
1.5 21.9723 0 354.783 −125.000 0 343.000 4982.95 0 −2746.54
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.m 5
3.b odd 2 1 35.8.a.d 5
12.b even 2 1 560.8.a.s 5
15.d odd 2 1 175.8.a.f 5
15.e even 4 2 175.8.b.f 10
21.c even 2 1 245.8.a.f 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.8.a.d 5 3.b odd 2 1
175.8.a.f 5 15.d odd 2 1
175.8.b.f 10 15.e even 4 2
245.8.a.f 5 21.c even 2 1
315.8.a.m 5 1.a even 1 1 trivial
560.8.a.s 5 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} + 11T_{2}^{4} - 536T_{2}^{3} - 5950T_{2}^{2} + 29124T_{2} + 233280 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 11 T^{4} + \cdots + 233280 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( (T + 125)^{5} \) Copy content Toggle raw display
$7$ \( (T - 343)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 85\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 52\!\cdots\!40 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 16\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 14\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 14\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 59\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 35\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 14\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 26\!\cdots\!80 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 20\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 17\!\cdots\!48 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 63\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 28\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 99\!\cdots\!92 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 15\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 51\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 31\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 44\!\cdots\!48 \) Copy content Toggle raw display
show more
show less