Properties

Label 315.8.a.l
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 295x^{2} + 188x + 1420 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 3) q^{2} + (\beta_{2} - 4 \beta_1 + 29) q^{4} - 125 q^{5} - 343 q^{7} + ( - \beta_{3} + 7 \beta_{2} + \cdots + 431) q^{8} + (125 \beta_1 - 375) q^{10} + (9 \beta_{3} + 5 \beta_{2} + \cdots - 224) q^{11}+ \cdots + ( - 117649 \beta_1 + 352947) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{2} + 106 q^{4} - 500 q^{5} - 1372 q^{7} + 1626 q^{8} - 1250 q^{10} - 1156 q^{11} + 1540 q^{13} - 3430 q^{14} + 17442 q^{16} + 7496 q^{17} + 32052 q^{19} - 13250 q^{20} + 71176 q^{22} + 41888 q^{23}+ \cdots + 1176490 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 295x^{2} + 188x + 1420 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 148 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 285\nu + 136 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 148 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 289\beta _1 + 160 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.7605
2.54245
−1.91945
−16.3835
−14.7605 0 89.8711 −125.000 0 −343.000 562.800 0 1845.06
1.2 0.457550 0 −127.791 −125.000 0 −343.000 −117.037 0 −57.1937
1.3 4.91945 0 −103.799 −125.000 0 −343.000 −1140.32 0 −614.931
1.4 19.3835 0 247.719 −125.000 0 −343.000 2320.56 0 −2422.93
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.l 4
3.b odd 2 1 105.8.a.d 4
15.d odd 2 1 525.8.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.8.a.d 4 3.b odd 2 1
315.8.a.l 4 1.a even 1 1 trivial
525.8.a.m 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 10T_{2}^{3} - 259T_{2}^{2} + 1528T_{2} - 644 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 10 T^{3} + \cdots - 644 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T + 125)^{4} \) Copy content Toggle raw display
$7$ \( (T + 343)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 68367082577920 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 22578519713552 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 10\!\cdots\!28 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 62\!\cdots\!48 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 94\!\cdots\!40 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 95\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 48\!\cdots\!32 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 11\!\cdots\!32 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 10\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 82\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 64\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 77\!\cdots\!08 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 54\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 10\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 12\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 16\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 46\!\cdots\!08 \) Copy content Toggle raw display
show more
show less