Properties

Label 315.8.a.i.1.3
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 466x^{2} + 520x + 23440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(8.26635\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.26635 q^{2} -59.6674 q^{4} -125.000 q^{5} -343.000 q^{7} -1551.33 q^{8} -1033.29 q^{10} +3547.11 q^{11} +4408.70 q^{13} -2835.36 q^{14} -5186.37 q^{16} +16990.2 q^{17} +25713.7 q^{19} +7458.43 q^{20} +29321.6 q^{22} +24466.1 q^{23} +15625.0 q^{25} +36443.9 q^{26} +20465.9 q^{28} -92513.3 q^{29} -93621.2 q^{31} +155697. q^{32} +140447. q^{34} +42875.0 q^{35} -126496. q^{37} +212559. q^{38} +193916. q^{40} -543623. q^{41} +343395. q^{43} -211647. q^{44} +202246. q^{46} -1.23676e6 q^{47} +117649. q^{49} +129162. q^{50} -263056. q^{52} -1.06010e6 q^{53} -443388. q^{55} +532104. q^{56} -764748. q^{58} -2.05102e6 q^{59} +1.65799e6 q^{61} -773906. q^{62} +1.95090e6 q^{64} -551088. q^{65} +2.34375e6 q^{67} -1.01376e6 q^{68} +354420. q^{70} -3.66791e6 q^{71} +628165. q^{73} -1.04566e6 q^{74} -1.53427e6 q^{76} -1.21666e6 q^{77} -417813. q^{79} +648296. q^{80} -4.49378e6 q^{82} +1.45178e6 q^{83} -2.12378e6 q^{85} +2.83862e6 q^{86} -5.50271e6 q^{88} -692594. q^{89} -1.51219e6 q^{91} -1.45983e6 q^{92} -1.02235e7 q^{94} -3.21421e6 q^{95} -1.77040e7 q^{97} +972528. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 421 q^{4} - 500 q^{5} - 1372 q^{7} - 417 q^{8} - 125 q^{10} - 7852 q^{11} + 18532 q^{13} - 343 q^{14} + 47601 q^{16} - 33976 q^{17} + 22188 q^{19} - 52625 q^{20} + 18076 q^{22} + 22736 q^{23}+ \cdots + 117649 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.26635 0.730649 0.365325 0.930880i \(-0.380958\pi\)
0.365325 + 0.930880i \(0.380958\pi\)
\(3\) 0 0
\(4\) −59.6674 −0.466152
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) −1551.33 −1.07124
\(9\) 0 0
\(10\) −1033.29 −0.326756
\(11\) 3547.11 0.803526 0.401763 0.915744i \(-0.368398\pi\)
0.401763 + 0.915744i \(0.368398\pi\)
\(12\) 0 0
\(13\) 4408.70 0.556556 0.278278 0.960501i \(-0.410236\pi\)
0.278278 + 0.960501i \(0.410236\pi\)
\(14\) −2835.36 −0.276159
\(15\) 0 0
\(16\) −5186.37 −0.316551
\(17\) 16990.2 0.838740 0.419370 0.907815i \(-0.362251\pi\)
0.419370 + 0.907815i \(0.362251\pi\)
\(18\) 0 0
\(19\) 25713.7 0.860057 0.430028 0.902815i \(-0.358504\pi\)
0.430028 + 0.902815i \(0.358504\pi\)
\(20\) 7458.43 0.208469
\(21\) 0 0
\(22\) 29321.6 0.587095
\(23\) 24466.1 0.419293 0.209647 0.977777i \(-0.432769\pi\)
0.209647 + 0.977777i \(0.432769\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 36443.9 0.406648
\(27\) 0 0
\(28\) 20465.9 0.176189
\(29\) −92513.3 −0.704387 −0.352193 0.935927i \(-0.614564\pi\)
−0.352193 + 0.935927i \(0.614564\pi\)
\(30\) 0 0
\(31\) −93621.2 −0.564428 −0.282214 0.959351i \(-0.591069\pi\)
−0.282214 + 0.959351i \(0.591069\pi\)
\(32\) 155697. 0.839955
\(33\) 0 0
\(34\) 140447. 0.612825
\(35\) 42875.0 0.169031
\(36\) 0 0
\(37\) −126496. −0.410554 −0.205277 0.978704i \(-0.565810\pi\)
−0.205277 + 0.978704i \(0.565810\pi\)
\(38\) 212559. 0.628400
\(39\) 0 0
\(40\) 193916. 0.479074
\(41\) −543623. −1.23184 −0.615920 0.787808i \(-0.711216\pi\)
−0.615920 + 0.787808i \(0.711216\pi\)
\(42\) 0 0
\(43\) 343395. 0.658650 0.329325 0.944217i \(-0.393179\pi\)
0.329325 + 0.944217i \(0.393179\pi\)
\(44\) −211647. −0.374565
\(45\) 0 0
\(46\) 202246. 0.306356
\(47\) −1.23676e6 −1.73758 −0.868788 0.495184i \(-0.835101\pi\)
−0.868788 + 0.495184i \(0.835101\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 129162. 0.146130
\(51\) 0 0
\(52\) −263056. −0.259440
\(53\) −1.06010e6 −0.978092 −0.489046 0.872258i \(-0.662655\pi\)
−0.489046 + 0.872258i \(0.662655\pi\)
\(54\) 0 0
\(55\) −443388. −0.359348
\(56\) 532104. 0.404892
\(57\) 0 0
\(58\) −764748. −0.514660
\(59\) −2.05102e6 −1.30013 −0.650067 0.759877i \(-0.725259\pi\)
−0.650067 + 0.759877i \(0.725259\pi\)
\(60\) 0 0
\(61\) 1.65799e6 0.935250 0.467625 0.883927i \(-0.345110\pi\)
0.467625 + 0.883927i \(0.345110\pi\)
\(62\) −773906. −0.412399
\(63\) 0 0
\(64\) 1.95090e6 0.930263
\(65\) −551088. −0.248900
\(66\) 0 0
\(67\) 2.34375e6 0.952025 0.476013 0.879438i \(-0.342082\pi\)
0.476013 + 0.879438i \(0.342082\pi\)
\(68\) −1.01376e6 −0.390980
\(69\) 0 0
\(70\) 354420. 0.123502
\(71\) −3.66791e6 −1.21623 −0.608113 0.793851i \(-0.708073\pi\)
−0.608113 + 0.793851i \(0.708073\pi\)
\(72\) 0 0
\(73\) 628165. 0.188992 0.0944961 0.995525i \(-0.469876\pi\)
0.0944961 + 0.995525i \(0.469876\pi\)
\(74\) −1.04566e6 −0.299971
\(75\) 0 0
\(76\) −1.53427e6 −0.400917
\(77\) −1.21666e6 −0.303704
\(78\) 0 0
\(79\) −417813. −0.0953427 −0.0476714 0.998863i \(-0.515180\pi\)
−0.0476714 + 0.998863i \(0.515180\pi\)
\(80\) 648296. 0.141566
\(81\) 0 0
\(82\) −4.49378e6 −0.900043
\(83\) 1.45178e6 0.278695 0.139347 0.990244i \(-0.455500\pi\)
0.139347 + 0.990244i \(0.455500\pi\)
\(84\) 0 0
\(85\) −2.12378e6 −0.375096
\(86\) 2.83862e6 0.481242
\(87\) 0 0
\(88\) −5.50271e6 −0.860771
\(89\) −692594. −0.104139 −0.0520696 0.998643i \(-0.516582\pi\)
−0.0520696 + 0.998643i \(0.516582\pi\)
\(90\) 0 0
\(91\) −1.51219e6 −0.210359
\(92\) −1.45983e6 −0.195454
\(93\) 0 0
\(94\) −1.02235e7 −1.26956
\(95\) −3.21421e6 −0.384629
\(96\) 0 0
\(97\) −1.77040e7 −1.96956 −0.984781 0.173799i \(-0.944396\pi\)
−0.984781 + 0.173799i \(0.944396\pi\)
\(98\) 972528. 0.104378
\(99\) 0 0
\(100\) −932303. −0.0932303
\(101\) 1.52926e7 1.47692 0.738461 0.674296i \(-0.235553\pi\)
0.738461 + 0.674296i \(0.235553\pi\)
\(102\) 0 0
\(103\) −5.57731e6 −0.502915 −0.251458 0.967868i \(-0.580910\pi\)
−0.251458 + 0.967868i \(0.580910\pi\)
\(104\) −6.83933e6 −0.596207
\(105\) 0 0
\(106\) −8.76313e6 −0.714642
\(107\) −2.49679e7 −1.97033 −0.985163 0.171621i \(-0.945099\pi\)
−0.985163 + 0.171621i \(0.945099\pi\)
\(108\) 0 0
\(109\) 7.44376e6 0.550554 0.275277 0.961365i \(-0.411230\pi\)
0.275277 + 0.961365i \(0.411230\pi\)
\(110\) −3.66520e6 −0.262557
\(111\) 0 0
\(112\) 1.77892e6 0.119645
\(113\) 6.62703e6 0.432060 0.216030 0.976387i \(-0.430689\pi\)
0.216030 + 0.976387i \(0.430689\pi\)
\(114\) 0 0
\(115\) −3.05827e6 −0.187514
\(116\) 5.52003e6 0.328351
\(117\) 0 0
\(118\) −1.69545e7 −0.949942
\(119\) −5.82764e6 −0.317014
\(120\) 0 0
\(121\) −6.90521e6 −0.354346
\(122\) 1.37055e7 0.683340
\(123\) 0 0
\(124\) 5.58614e6 0.263109
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) 3.00350e7 1.30111 0.650555 0.759459i \(-0.274536\pi\)
0.650555 + 0.759459i \(0.274536\pi\)
\(128\) −3.80239e6 −0.160259
\(129\) 0 0
\(130\) −4.55549e6 −0.181858
\(131\) 1.94728e7 0.756798 0.378399 0.925643i \(-0.376475\pi\)
0.378399 + 0.925643i \(0.376475\pi\)
\(132\) 0 0
\(133\) −8.81980e6 −0.325071
\(134\) 1.93742e7 0.695597
\(135\) 0 0
\(136\) −2.63573e7 −0.898494
\(137\) −2.05782e7 −0.683731 −0.341865 0.939749i \(-0.611059\pi\)
−0.341865 + 0.939749i \(0.611059\pi\)
\(138\) 0 0
\(139\) 2.02312e6 0.0638954 0.0319477 0.999490i \(-0.489829\pi\)
0.0319477 + 0.999490i \(0.489829\pi\)
\(140\) −2.55824e6 −0.0787940
\(141\) 0 0
\(142\) −3.03202e7 −0.888635
\(143\) 1.56381e7 0.447207
\(144\) 0 0
\(145\) 1.15642e7 0.315011
\(146\) 5.19263e6 0.138087
\(147\) 0 0
\(148\) 7.54768e6 0.191380
\(149\) −7.53498e6 −0.186608 −0.0933039 0.995638i \(-0.529743\pi\)
−0.0933039 + 0.995638i \(0.529743\pi\)
\(150\) 0 0
\(151\) −7.66069e7 −1.81071 −0.905354 0.424657i \(-0.860395\pi\)
−0.905354 + 0.424657i \(0.860395\pi\)
\(152\) −3.98903e7 −0.921329
\(153\) 0 0
\(154\) −1.00573e7 −0.221901
\(155\) 1.17027e7 0.252420
\(156\) 0 0
\(157\) 3.68625e7 0.760215 0.380107 0.924942i \(-0.375887\pi\)
0.380107 + 0.924942i \(0.375887\pi\)
\(158\) −3.45379e6 −0.0696621
\(159\) 0 0
\(160\) −1.94622e7 −0.375639
\(161\) −8.39188e6 −0.158478
\(162\) 0 0
\(163\) 6.02804e7 1.09023 0.545116 0.838360i \(-0.316485\pi\)
0.545116 + 0.838360i \(0.316485\pi\)
\(164\) 3.24366e7 0.574225
\(165\) 0 0
\(166\) 1.20010e7 0.203628
\(167\) −6.08740e6 −0.101140 −0.0505701 0.998721i \(-0.516104\pi\)
−0.0505701 + 0.998721i \(0.516104\pi\)
\(168\) 0 0
\(169\) −4.33118e7 −0.690245
\(170\) −1.75559e7 −0.274064
\(171\) 0 0
\(172\) −2.04895e7 −0.307031
\(173\) −1.03270e8 −1.51639 −0.758196 0.652027i \(-0.773919\pi\)
−0.758196 + 0.652027i \(0.773919\pi\)
\(174\) 0 0
\(175\) −5.35938e6 −0.0755929
\(176\) −1.83966e7 −0.254357
\(177\) 0 0
\(178\) −5.72523e6 −0.0760892
\(179\) 4.48749e7 0.584815 0.292407 0.956294i \(-0.405544\pi\)
0.292407 + 0.956294i \(0.405544\pi\)
\(180\) 0 0
\(181\) −4.66260e7 −0.584458 −0.292229 0.956348i \(-0.594397\pi\)
−0.292229 + 0.956348i \(0.594397\pi\)
\(182\) −1.25003e7 −0.153698
\(183\) 0 0
\(184\) −3.79549e7 −0.449165
\(185\) 1.58120e7 0.183605
\(186\) 0 0
\(187\) 6.02661e7 0.673949
\(188\) 7.37945e7 0.809974
\(189\) 0 0
\(190\) −2.65698e7 −0.281029
\(191\) −4.20911e7 −0.437092 −0.218546 0.975827i \(-0.570131\pi\)
−0.218546 + 0.975827i \(0.570131\pi\)
\(192\) 0 0
\(193\) 5.03754e7 0.504391 0.252196 0.967676i \(-0.418847\pi\)
0.252196 + 0.967676i \(0.418847\pi\)
\(194\) −1.46347e8 −1.43906
\(195\) 0 0
\(196\) −7.01981e6 −0.0665931
\(197\) −9.44022e7 −0.879732 −0.439866 0.898063i \(-0.644974\pi\)
−0.439866 + 0.898063i \(0.644974\pi\)
\(198\) 0 0
\(199\) −1.69674e8 −1.52626 −0.763130 0.646245i \(-0.776338\pi\)
−0.763130 + 0.646245i \(0.776338\pi\)
\(200\) −2.42395e7 −0.214249
\(201\) 0 0
\(202\) 1.26414e8 1.07911
\(203\) 3.17321e7 0.266233
\(204\) 0 0
\(205\) 6.79529e7 0.550896
\(206\) −4.61040e7 −0.367455
\(207\) 0 0
\(208\) −2.28652e7 −0.176178
\(209\) 9.12093e7 0.691078
\(210\) 0 0
\(211\) 4.76245e7 0.349013 0.174506 0.984656i \(-0.444167\pi\)
0.174506 + 0.984656i \(0.444167\pi\)
\(212\) 6.32532e7 0.455939
\(213\) 0 0
\(214\) −2.06393e8 −1.43962
\(215\) −4.29244e7 −0.294557
\(216\) 0 0
\(217\) 3.21121e7 0.213334
\(218\) 6.15328e7 0.402262
\(219\) 0 0
\(220\) 2.64558e7 0.167511
\(221\) 7.49048e7 0.466806
\(222\) 0 0
\(223\) −2.01841e8 −1.21883 −0.609415 0.792851i \(-0.708596\pi\)
−0.609415 + 0.792851i \(0.708596\pi\)
\(224\) −5.34042e7 −0.317473
\(225\) 0 0
\(226\) 5.47813e7 0.315684
\(227\) −1.28556e8 −0.729461 −0.364730 0.931113i \(-0.618839\pi\)
−0.364730 + 0.931113i \(0.618839\pi\)
\(228\) 0 0
\(229\) −1.37958e8 −0.759141 −0.379571 0.925163i \(-0.623928\pi\)
−0.379571 + 0.925163i \(0.623928\pi\)
\(230\) −2.52807e7 −0.137007
\(231\) 0 0
\(232\) 1.43518e8 0.754569
\(233\) 1.56981e8 0.813019 0.406510 0.913646i \(-0.366746\pi\)
0.406510 + 0.913646i \(0.366746\pi\)
\(234\) 0 0
\(235\) 1.54595e8 0.777068
\(236\) 1.22379e8 0.606059
\(237\) 0 0
\(238\) −4.81733e7 −0.231626
\(239\) −2.34755e8 −1.11230 −0.556149 0.831082i \(-0.687722\pi\)
−0.556149 + 0.831082i \(0.687722\pi\)
\(240\) 0 0
\(241\) 3.50057e7 0.161094 0.0805469 0.996751i \(-0.474333\pi\)
0.0805469 + 0.996751i \(0.474333\pi\)
\(242\) −5.70809e7 −0.258903
\(243\) 0 0
\(244\) −9.89280e7 −0.435968
\(245\) −1.47061e7 −0.0638877
\(246\) 0 0
\(247\) 1.13364e8 0.478670
\(248\) 1.45237e8 0.604639
\(249\) 0 0
\(250\) −1.61452e7 −0.0653513
\(251\) −6.95867e7 −0.277759 −0.138880 0.990309i \(-0.544350\pi\)
−0.138880 + 0.990309i \(0.544350\pi\)
\(252\) 0 0
\(253\) 8.67840e7 0.336913
\(254\) 2.48280e8 0.950656
\(255\) 0 0
\(256\) −2.81148e8 −1.04736
\(257\) −3.25923e8 −1.19770 −0.598852 0.800860i \(-0.704376\pi\)
−0.598852 + 0.800860i \(0.704376\pi\)
\(258\) 0 0
\(259\) 4.33881e7 0.155175
\(260\) 3.28820e7 0.116025
\(261\) 0 0
\(262\) 1.60969e8 0.552954
\(263\) 9.75945e7 0.330811 0.165406 0.986226i \(-0.447107\pi\)
0.165406 + 0.986226i \(0.447107\pi\)
\(264\) 0 0
\(265\) 1.32512e8 0.437416
\(266\) −7.29076e7 −0.237513
\(267\) 0 0
\(268\) −1.39845e8 −0.443788
\(269\) 1.97478e8 0.618566 0.309283 0.950970i \(-0.399911\pi\)
0.309283 + 0.950970i \(0.399911\pi\)
\(270\) 0 0
\(271\) 2.08346e8 0.635904 0.317952 0.948107i \(-0.397005\pi\)
0.317952 + 0.948107i \(0.397005\pi\)
\(272\) −8.81175e7 −0.265504
\(273\) 0 0
\(274\) −1.70107e8 −0.499567
\(275\) 5.54235e7 0.160705
\(276\) 0 0
\(277\) −5.69876e8 −1.61102 −0.805511 0.592581i \(-0.798109\pi\)
−0.805511 + 0.592581i \(0.798109\pi\)
\(278\) 1.67238e7 0.0466851
\(279\) 0 0
\(280\) −6.65131e7 −0.181073
\(281\) −3.82839e8 −1.02930 −0.514652 0.857399i \(-0.672079\pi\)
−0.514652 + 0.857399i \(0.672079\pi\)
\(282\) 0 0
\(283\) −2.15239e8 −0.564505 −0.282252 0.959340i \(-0.591082\pi\)
−0.282252 + 0.959340i \(0.591082\pi\)
\(284\) 2.18855e8 0.566946
\(285\) 0 0
\(286\) 1.29270e8 0.326752
\(287\) 1.86463e8 0.465592
\(288\) 0 0
\(289\) −1.21671e8 −0.296515
\(290\) 9.55935e7 0.230163
\(291\) 0 0
\(292\) −3.74810e7 −0.0880990
\(293\) 2.04076e8 0.473974 0.236987 0.971513i \(-0.423840\pi\)
0.236987 + 0.971513i \(0.423840\pi\)
\(294\) 0 0
\(295\) 2.56378e8 0.581437
\(296\) 1.96236e8 0.439803
\(297\) 0 0
\(298\) −6.22868e7 −0.136345
\(299\) 1.07864e8 0.233360
\(300\) 0 0
\(301\) −1.17785e8 −0.248946
\(302\) −6.33260e8 −1.32299
\(303\) 0 0
\(304\) −1.33361e8 −0.272252
\(305\) −2.07249e8 −0.418257
\(306\) 0 0
\(307\) −3.52627e6 −0.00695555 −0.00347778 0.999994i \(-0.501107\pi\)
−0.00347778 + 0.999994i \(0.501107\pi\)
\(308\) 7.25948e7 0.141572
\(309\) 0 0
\(310\) 9.67383e7 0.184430
\(311\) −1.66245e8 −0.313391 −0.156696 0.987647i \(-0.550084\pi\)
−0.156696 + 0.987647i \(0.550084\pi\)
\(312\) 0 0
\(313\) 8.83677e8 1.62888 0.814439 0.580249i \(-0.197045\pi\)
0.814439 + 0.580249i \(0.197045\pi\)
\(314\) 3.04719e8 0.555450
\(315\) 0 0
\(316\) 2.49299e7 0.0444442
\(317\) 4.23678e8 0.747014 0.373507 0.927627i \(-0.378155\pi\)
0.373507 + 0.927627i \(0.378155\pi\)
\(318\) 0 0
\(319\) −3.28155e8 −0.565993
\(320\) −2.43863e8 −0.416026
\(321\) 0 0
\(322\) −6.93703e7 −0.115792
\(323\) 4.36881e8 0.721364
\(324\) 0 0
\(325\) 6.88860e7 0.111311
\(326\) 4.98299e8 0.796578
\(327\) 0 0
\(328\) 8.43336e8 1.31960
\(329\) 4.24210e8 0.656742
\(330\) 0 0
\(331\) 1.28843e7 0.0195282 0.00976410 0.999952i \(-0.496892\pi\)
0.00976410 + 0.999952i \(0.496892\pi\)
\(332\) −8.66242e7 −0.129914
\(333\) 0 0
\(334\) −5.03206e7 −0.0738981
\(335\) −2.92968e8 −0.425759
\(336\) 0 0
\(337\) 5.36738e7 0.0763937 0.0381969 0.999270i \(-0.487839\pi\)
0.0381969 + 0.999270i \(0.487839\pi\)
\(338\) −3.58031e8 −0.504327
\(339\) 0 0
\(340\) 1.26720e8 0.174852
\(341\) −3.32084e8 −0.453532
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) −5.32717e8 −0.705574
\(345\) 0 0
\(346\) −8.53663e8 −1.10795
\(347\) −6.78354e8 −0.871572 −0.435786 0.900050i \(-0.643530\pi\)
−0.435786 + 0.900050i \(0.643530\pi\)
\(348\) 0 0
\(349\) 1.38576e9 1.74501 0.872506 0.488603i \(-0.162494\pi\)
0.872506 + 0.488603i \(0.162494\pi\)
\(350\) −4.43025e7 −0.0552319
\(351\) 0 0
\(352\) 5.52275e8 0.674925
\(353\) 1.07056e9 1.29538 0.647692 0.761902i \(-0.275734\pi\)
0.647692 + 0.761902i \(0.275734\pi\)
\(354\) 0 0
\(355\) 4.58489e8 0.543913
\(356\) 4.13253e7 0.0485446
\(357\) 0 0
\(358\) 3.70952e8 0.427294
\(359\) 8.78736e8 1.00237 0.501185 0.865340i \(-0.332898\pi\)
0.501185 + 0.865340i \(0.332898\pi\)
\(360\) 0 0
\(361\) −2.32677e8 −0.260302
\(362\) −3.85427e8 −0.427034
\(363\) 0 0
\(364\) 9.02282e7 0.0980590
\(365\) −7.85206e7 −0.0845199
\(366\) 0 0
\(367\) 2.19145e8 0.231420 0.115710 0.993283i \(-0.463086\pi\)
0.115710 + 0.993283i \(0.463086\pi\)
\(368\) −1.26890e8 −0.132728
\(369\) 0 0
\(370\) 1.30707e8 0.134151
\(371\) 3.63613e8 0.369684
\(372\) 0 0
\(373\) −3.22635e8 −0.321907 −0.160953 0.986962i \(-0.551457\pi\)
−0.160953 + 0.986962i \(0.551457\pi\)
\(374\) 4.98181e8 0.492421
\(375\) 0 0
\(376\) 1.91862e9 1.86137
\(377\) −4.07864e8 −0.392031
\(378\) 0 0
\(379\) 1.60097e9 1.51059 0.755295 0.655385i \(-0.227494\pi\)
0.755295 + 0.655385i \(0.227494\pi\)
\(380\) 1.91784e8 0.179295
\(381\) 0 0
\(382\) −3.47940e8 −0.319361
\(383\) 1.99401e8 0.181356 0.0906781 0.995880i \(-0.471097\pi\)
0.0906781 + 0.995880i \(0.471097\pi\)
\(384\) 0 0
\(385\) 1.52082e8 0.135821
\(386\) 4.16420e8 0.368533
\(387\) 0 0
\(388\) 1.05635e9 0.918115
\(389\) −1.06573e9 −0.917956 −0.458978 0.888448i \(-0.651784\pi\)
−0.458978 + 0.888448i \(0.651784\pi\)
\(390\) 0 0
\(391\) 4.15685e8 0.351678
\(392\) −1.82512e8 −0.153035
\(393\) 0 0
\(394\) −7.80362e8 −0.642776
\(395\) 5.22267e7 0.0426386
\(396\) 0 0
\(397\) 1.50813e9 1.20969 0.604844 0.796344i \(-0.293236\pi\)
0.604844 + 0.796344i \(0.293236\pi\)
\(398\) −1.40258e9 −1.11516
\(399\) 0 0
\(400\) −8.10370e7 −0.0633102
\(401\) −1.18481e8 −0.0917579 −0.0458790 0.998947i \(-0.514609\pi\)
−0.0458790 + 0.998947i \(0.514609\pi\)
\(402\) 0 0
\(403\) −4.12748e8 −0.314136
\(404\) −9.12472e8 −0.688470
\(405\) 0 0
\(406\) 2.62308e8 0.194523
\(407\) −4.48694e8 −0.329891
\(408\) 0 0
\(409\) −4.10749e8 −0.296856 −0.148428 0.988923i \(-0.547421\pi\)
−0.148428 + 0.988923i \(0.547421\pi\)
\(410\) 5.61723e8 0.402512
\(411\) 0 0
\(412\) 3.32784e8 0.234435
\(413\) 7.03500e8 0.491404
\(414\) 0 0
\(415\) −1.81473e8 −0.124636
\(416\) 6.86423e8 0.467482
\(417\) 0 0
\(418\) 7.53968e8 0.504935
\(419\) 9.38739e8 0.623442 0.311721 0.950174i \(-0.399095\pi\)
0.311721 + 0.950174i \(0.399095\pi\)
\(420\) 0 0
\(421\) −2.00748e9 −1.31119 −0.655594 0.755114i \(-0.727582\pi\)
−0.655594 + 0.755114i \(0.727582\pi\)
\(422\) 3.93681e8 0.255006
\(423\) 0 0
\(424\) 1.64455e9 1.04777
\(425\) 2.65472e8 0.167748
\(426\) 0 0
\(427\) −5.68691e8 −0.353491
\(428\) 1.48977e9 0.918471
\(429\) 0 0
\(430\) −3.54828e8 −0.215218
\(431\) 5.32959e8 0.320644 0.160322 0.987065i \(-0.448747\pi\)
0.160322 + 0.987065i \(0.448747\pi\)
\(432\) 0 0
\(433\) 2.69449e9 1.59503 0.797516 0.603297i \(-0.206147\pi\)
0.797516 + 0.603297i \(0.206147\pi\)
\(434\) 2.65450e8 0.155872
\(435\) 0 0
\(436\) −4.44150e8 −0.256642
\(437\) 6.29115e8 0.360616
\(438\) 0 0
\(439\) −2.57558e9 −1.45295 −0.726473 0.687195i \(-0.758842\pi\)
−0.726473 + 0.687195i \(0.758842\pi\)
\(440\) 6.87839e8 0.384949
\(441\) 0 0
\(442\) 6.19190e8 0.341072
\(443\) −5.38925e8 −0.294521 −0.147260 0.989098i \(-0.547045\pi\)
−0.147260 + 0.989098i \(0.547045\pi\)
\(444\) 0 0
\(445\) 8.65743e7 0.0465724
\(446\) −1.66849e9 −0.890538
\(447\) 0 0
\(448\) −6.69160e8 −0.351606
\(449\) 2.08562e9 1.08736 0.543681 0.839292i \(-0.317030\pi\)
0.543681 + 0.839292i \(0.317030\pi\)
\(450\) 0 0
\(451\) −1.92829e9 −0.989816
\(452\) −3.95418e8 −0.201406
\(453\) 0 0
\(454\) −1.06269e9 −0.532980
\(455\) 1.89023e8 0.0940752
\(456\) 0 0
\(457\) −2.76612e9 −1.35570 −0.677852 0.735199i \(-0.737089\pi\)
−0.677852 + 0.735199i \(0.737089\pi\)
\(458\) −1.14041e9 −0.554666
\(459\) 0 0
\(460\) 1.82479e8 0.0874098
\(461\) 2.74411e9 1.30451 0.652256 0.757998i \(-0.273823\pi\)
0.652256 + 0.757998i \(0.273823\pi\)
\(462\) 0 0
\(463\) 5.74107e8 0.268819 0.134409 0.990926i \(-0.457086\pi\)
0.134409 + 0.990926i \(0.457086\pi\)
\(464\) 4.79808e8 0.222974
\(465\) 0 0
\(466\) 1.29766e9 0.594032
\(467\) −1.43212e9 −0.650683 −0.325341 0.945597i \(-0.605479\pi\)
−0.325341 + 0.945597i \(0.605479\pi\)
\(468\) 0 0
\(469\) −8.03905e8 −0.359832
\(470\) 1.27794e9 0.567764
\(471\) 0 0
\(472\) 3.18180e9 1.39276
\(473\) 1.21806e9 0.529242
\(474\) 0 0
\(475\) 4.01777e8 0.172011
\(476\) 3.47720e8 0.147777
\(477\) 0 0
\(478\) −1.94056e9 −0.812700
\(479\) −7.93038e8 −0.329701 −0.164850 0.986319i \(-0.552714\pi\)
−0.164850 + 0.986319i \(0.552714\pi\)
\(480\) 0 0
\(481\) −5.57683e8 −0.228496
\(482\) 2.89369e8 0.117703
\(483\) 0 0
\(484\) 4.12016e8 0.165179
\(485\) 2.21300e9 0.880815
\(486\) 0 0
\(487\) −3.21542e9 −1.26150 −0.630749 0.775987i \(-0.717252\pi\)
−0.630749 + 0.775987i \(0.717252\pi\)
\(488\) −2.57208e9 −1.00188
\(489\) 0 0
\(490\) −1.21566e8 −0.0466795
\(491\) 2.15616e9 0.822045 0.411023 0.911625i \(-0.365172\pi\)
0.411023 + 0.911625i \(0.365172\pi\)
\(492\) 0 0
\(493\) −1.57182e9 −0.590798
\(494\) 9.37108e8 0.349740
\(495\) 0 0
\(496\) 4.85554e8 0.178670
\(497\) 1.25809e9 0.459690
\(498\) 0 0
\(499\) 2.40680e9 0.867137 0.433569 0.901121i \(-0.357254\pi\)
0.433569 + 0.901121i \(0.357254\pi\)
\(500\) 1.16538e8 0.0416939
\(501\) 0 0
\(502\) −5.75228e8 −0.202944
\(503\) −1.32577e9 −0.464495 −0.232248 0.972657i \(-0.574608\pi\)
−0.232248 + 0.972657i \(0.574608\pi\)
\(504\) 0 0
\(505\) −1.91158e9 −0.660500
\(506\) 7.17387e8 0.246165
\(507\) 0 0
\(508\) −1.79211e9 −0.606515
\(509\) −5.72914e9 −1.92565 −0.962824 0.270130i \(-0.912933\pi\)
−0.962824 + 0.270130i \(0.912933\pi\)
\(510\) 0 0
\(511\) −2.15461e8 −0.0714323
\(512\) −1.83736e9 −0.604991
\(513\) 0 0
\(514\) −2.69420e9 −0.875102
\(515\) 6.97164e8 0.224911
\(516\) 0 0
\(517\) −4.38693e9 −1.39619
\(518\) 3.58661e8 0.113378
\(519\) 0 0
\(520\) 8.54917e8 0.266632
\(521\) 3.58877e9 1.11177 0.555884 0.831260i \(-0.312380\pi\)
0.555884 + 0.831260i \(0.312380\pi\)
\(522\) 0 0
\(523\) 1.61650e9 0.494106 0.247053 0.969002i \(-0.420538\pi\)
0.247053 + 0.969002i \(0.420538\pi\)
\(524\) −1.16189e9 −0.352783
\(525\) 0 0
\(526\) 8.06751e8 0.241707
\(527\) −1.59064e9 −0.473408
\(528\) 0 0
\(529\) −2.80623e9 −0.824193
\(530\) 1.09539e9 0.319598
\(531\) 0 0
\(532\) 5.26255e8 0.151532
\(533\) −2.39667e9 −0.685589
\(534\) 0 0
\(535\) 3.12098e9 0.881157
\(536\) −3.63591e9 −1.01985
\(537\) 0 0
\(538\) 1.63242e9 0.451955
\(539\) 4.17314e8 0.114789
\(540\) 0 0
\(541\) −9.99263e8 −0.271325 −0.135662 0.990755i \(-0.543316\pi\)
−0.135662 + 0.990755i \(0.543316\pi\)
\(542\) 1.72226e9 0.464623
\(543\) 0 0
\(544\) 2.64533e9 0.704504
\(545\) −9.30471e8 −0.246215
\(546\) 0 0
\(547\) −5.11148e9 −1.33534 −0.667668 0.744459i \(-0.732708\pi\)
−0.667668 + 0.744459i \(0.732708\pi\)
\(548\) 1.22785e9 0.318722
\(549\) 0 0
\(550\) 4.58150e8 0.117419
\(551\) −2.37886e9 −0.605813
\(552\) 0 0
\(553\) 1.43310e8 0.0360362
\(554\) −4.71080e9 −1.17709
\(555\) 0 0
\(556\) −1.20714e8 −0.0297849
\(557\) −6.05188e9 −1.48387 −0.741937 0.670470i \(-0.766093\pi\)
−0.741937 + 0.670470i \(0.766093\pi\)
\(558\) 0 0
\(559\) 1.51393e9 0.366576
\(560\) −2.22366e8 −0.0535069
\(561\) 0 0
\(562\) −3.16468e9 −0.752060
\(563\) −5.25872e9 −1.24194 −0.620970 0.783834i \(-0.713261\pi\)
−0.620970 + 0.783834i \(0.713261\pi\)
\(564\) 0 0
\(565\) −8.28378e8 −0.193223
\(566\) −1.77924e9 −0.412455
\(567\) 0 0
\(568\) 5.69012e9 1.30287
\(569\) −7.61342e9 −1.73255 −0.866277 0.499564i \(-0.833493\pi\)
−0.866277 + 0.499564i \(0.833493\pi\)
\(570\) 0 0
\(571\) −6.80860e9 −1.53049 −0.765247 0.643737i \(-0.777383\pi\)
−0.765247 + 0.643737i \(0.777383\pi\)
\(572\) −9.33088e8 −0.208467
\(573\) 0 0
\(574\) 1.54137e9 0.340184
\(575\) 3.82283e8 0.0838586
\(576\) 0 0
\(577\) −5.69226e9 −1.23359 −0.616793 0.787125i \(-0.711569\pi\)
−0.616793 + 0.787125i \(0.711569\pi\)
\(578\) −1.00578e9 −0.216648
\(579\) 0 0
\(580\) −6.90004e8 −0.146843
\(581\) −4.97962e8 −0.105337
\(582\) 0 0
\(583\) −3.76027e9 −0.785922
\(584\) −9.74488e8 −0.202456
\(585\) 0 0
\(586\) 1.68696e9 0.346309
\(587\) 4.89079e9 0.998034 0.499017 0.866592i \(-0.333694\pi\)
0.499017 + 0.866592i \(0.333694\pi\)
\(588\) 0 0
\(589\) −2.40735e9 −0.485440
\(590\) 2.11931e9 0.424827
\(591\) 0 0
\(592\) 6.56054e8 0.129961
\(593\) 7.77823e9 1.53175 0.765877 0.642987i \(-0.222305\pi\)
0.765877 + 0.642987i \(0.222305\pi\)
\(594\) 0 0
\(595\) 7.28455e8 0.141773
\(596\) 4.49593e8 0.0869876
\(597\) 0 0
\(598\) 8.91641e8 0.170505
\(599\) −5.27135e9 −1.00214 −0.501070 0.865407i \(-0.667060\pi\)
−0.501070 + 0.865407i \(0.667060\pi\)
\(600\) 0 0
\(601\) −6.15092e9 −1.15579 −0.577896 0.816111i \(-0.696126\pi\)
−0.577896 + 0.816111i \(0.696126\pi\)
\(602\) −9.73648e8 −0.181892
\(603\) 0 0
\(604\) 4.57094e9 0.844065
\(605\) 8.63151e8 0.158469
\(606\) 0 0
\(607\) −1.45455e8 −0.0263978 −0.0131989 0.999913i \(-0.504201\pi\)
−0.0131989 + 0.999913i \(0.504201\pi\)
\(608\) 4.00355e9 0.722409
\(609\) 0 0
\(610\) −1.71319e9 −0.305599
\(611\) −5.45252e9 −0.967060
\(612\) 0 0
\(613\) −5.31052e9 −0.931163 −0.465582 0.885005i \(-0.654155\pi\)
−0.465582 + 0.885005i \(0.654155\pi\)
\(614\) −2.91494e7 −0.00508207
\(615\) 0 0
\(616\) 1.88743e9 0.325341
\(617\) 9.43304e8 0.161679 0.0808395 0.996727i \(-0.474240\pi\)
0.0808395 + 0.996727i \(0.474240\pi\)
\(618\) 0 0
\(619\) −1.99924e9 −0.338804 −0.169402 0.985547i \(-0.554184\pi\)
−0.169402 + 0.985547i \(0.554184\pi\)
\(620\) −6.98267e8 −0.117666
\(621\) 0 0
\(622\) −1.37424e9 −0.228979
\(623\) 2.37560e8 0.0393609
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 7.30479e9 1.19014
\(627\) 0 0
\(628\) −2.19949e9 −0.354375
\(629\) −2.14919e9 −0.344348
\(630\) 0 0
\(631\) 5.14161e9 0.814697 0.407349 0.913273i \(-0.366453\pi\)
0.407349 + 0.913273i \(0.366453\pi\)
\(632\) 6.48165e8 0.102135
\(633\) 0 0
\(634\) 3.50227e9 0.545805
\(635\) −3.75437e9 −0.581874
\(636\) 0 0
\(637\) 5.18680e8 0.0795081
\(638\) −2.71264e9 −0.413542
\(639\) 0 0
\(640\) 4.75299e8 0.0716699
\(641\) 8.05402e9 1.20784 0.603920 0.797045i \(-0.293604\pi\)
0.603920 + 0.797045i \(0.293604\pi\)
\(642\) 0 0
\(643\) 1.21205e10 1.79797 0.898983 0.437984i \(-0.144307\pi\)
0.898983 + 0.437984i \(0.144307\pi\)
\(644\) 5.00722e8 0.0738748
\(645\) 0 0
\(646\) 3.61142e9 0.527064
\(647\) −7.75077e9 −1.12507 −0.562536 0.826773i \(-0.690174\pi\)
−0.562536 + 0.826773i \(0.690174\pi\)
\(648\) 0 0
\(649\) −7.27519e9 −1.04469
\(650\) 5.69436e8 0.0813295
\(651\) 0 0
\(652\) −3.59677e9 −0.508214
\(653\) −7.09569e9 −0.997237 −0.498619 0.866822i \(-0.666159\pi\)
−0.498619 + 0.866822i \(0.666159\pi\)
\(654\) 0 0
\(655\) −2.43411e9 −0.338450
\(656\) 2.81943e9 0.389940
\(657\) 0 0
\(658\) 3.50667e9 0.479848
\(659\) −4.73697e9 −0.644766 −0.322383 0.946609i \(-0.604484\pi\)
−0.322383 + 0.946609i \(0.604484\pi\)
\(660\) 0 0
\(661\) 7.36157e9 0.991438 0.495719 0.868483i \(-0.334905\pi\)
0.495719 + 0.868483i \(0.334905\pi\)
\(662\) 1.06506e8 0.0142683
\(663\) 0 0
\(664\) −2.25219e9 −0.298550
\(665\) 1.10248e9 0.145376
\(666\) 0 0
\(667\) −2.26344e9 −0.295345
\(668\) 3.63219e8 0.0471467
\(669\) 0 0
\(670\) −2.42178e9 −0.311080
\(671\) 5.88107e9 0.751497
\(672\) 0 0
\(673\) −9.84049e9 −1.24441 −0.622205 0.782854i \(-0.713763\pi\)
−0.622205 + 0.782854i \(0.713763\pi\)
\(674\) 4.43687e8 0.0558170
\(675\) 0 0
\(676\) 2.58431e9 0.321759
\(677\) 2.42035e9 0.299790 0.149895 0.988702i \(-0.452106\pi\)
0.149895 + 0.988702i \(0.452106\pi\)
\(678\) 0 0
\(679\) 6.07246e9 0.744425
\(680\) 3.29467e9 0.401819
\(681\) 0 0
\(682\) −2.74513e9 −0.331373
\(683\) −1.33955e10 −1.60874 −0.804368 0.594131i \(-0.797496\pi\)
−0.804368 + 0.594131i \(0.797496\pi\)
\(684\) 0 0
\(685\) 2.57227e9 0.305774
\(686\) −3.33577e8 −0.0394514
\(687\) 0 0
\(688\) −1.78097e9 −0.208496
\(689\) −4.67365e9 −0.544363
\(690\) 0 0
\(691\) 9.33422e9 1.07623 0.538115 0.842872i \(-0.319137\pi\)
0.538115 + 0.842872i \(0.319137\pi\)
\(692\) 6.16183e9 0.706869
\(693\) 0 0
\(694\) −5.60751e9 −0.636814
\(695\) −2.52890e8 −0.0285749
\(696\) 0 0
\(697\) −9.23627e9 −1.03319
\(698\) 1.14552e10 1.27499
\(699\) 0 0
\(700\) 3.19780e8 0.0352378
\(701\) 4.41877e8 0.0484493 0.0242247 0.999707i \(-0.492288\pi\)
0.0242247 + 0.999707i \(0.492288\pi\)
\(702\) 0 0
\(703\) −3.25268e9 −0.353100
\(704\) 6.92006e9 0.747491
\(705\) 0 0
\(706\) 8.84960e9 0.946471
\(707\) −5.24537e9 −0.558224
\(708\) 0 0
\(709\) 1.18108e10 1.24456 0.622280 0.782795i \(-0.286206\pi\)
0.622280 + 0.782795i \(0.286206\pi\)
\(710\) 3.79003e9 0.397409
\(711\) 0 0
\(712\) 1.07444e9 0.111558
\(713\) −2.29055e9 −0.236661
\(714\) 0 0
\(715\) −1.95477e9 −0.199997
\(716\) −2.67757e9 −0.272612
\(717\) 0 0
\(718\) 7.26394e9 0.732381
\(719\) −2.21789e8 −0.0222530 −0.0111265 0.999938i \(-0.503542\pi\)
−0.0111265 + 0.999938i \(0.503542\pi\)
\(720\) 0 0
\(721\) 1.91302e9 0.190084
\(722\) −1.92339e9 −0.190190
\(723\) 0 0
\(724\) 2.78205e9 0.272446
\(725\) −1.44552e9 −0.140877
\(726\) 0 0
\(727\) −1.48455e10 −1.43293 −0.716463 0.697625i \(-0.754240\pi\)
−0.716463 + 0.697625i \(0.754240\pi\)
\(728\) 2.34589e9 0.225345
\(729\) 0 0
\(730\) −6.49079e8 −0.0617544
\(731\) 5.83435e9 0.552436
\(732\) 0 0
\(733\) 5.09111e9 0.477473 0.238736 0.971084i \(-0.423267\pi\)
0.238736 + 0.971084i \(0.423267\pi\)
\(734\) 1.81153e9 0.169087
\(735\) 0 0
\(736\) 3.80931e9 0.352187
\(737\) 8.31351e9 0.764977
\(738\) 0 0
\(739\) 1.21561e10 1.10800 0.553998 0.832518i \(-0.313102\pi\)
0.553998 + 0.832518i \(0.313102\pi\)
\(740\) −9.43460e8 −0.0855879
\(741\) 0 0
\(742\) 3.00575e9 0.270109
\(743\) −4.05104e9 −0.362331 −0.181166 0.983453i \(-0.557987\pi\)
−0.181166 + 0.983453i \(0.557987\pi\)
\(744\) 0 0
\(745\) 9.41872e8 0.0834536
\(746\) −2.66701e9 −0.235201
\(747\) 0 0
\(748\) −3.59592e9 −0.314163
\(749\) 8.56398e9 0.744713
\(750\) 0 0
\(751\) 4.19624e9 0.361510 0.180755 0.983528i \(-0.442146\pi\)
0.180755 + 0.983528i \(0.442146\pi\)
\(752\) 6.41431e9 0.550032
\(753\) 0 0
\(754\) −3.37155e9 −0.286437
\(755\) 9.57586e9 0.809774
\(756\) 0 0
\(757\) −7.95828e9 −0.666782 −0.333391 0.942789i \(-0.608193\pi\)
−0.333391 + 0.942789i \(0.608193\pi\)
\(758\) 1.32342e10 1.10371
\(759\) 0 0
\(760\) 4.98629e9 0.412031
\(761\) 2.19417e10 1.80478 0.902388 0.430923i \(-0.141812\pi\)
0.902388 + 0.430923i \(0.141812\pi\)
\(762\) 0 0
\(763\) −2.55321e9 −0.208090
\(764\) 2.51146e9 0.203751
\(765\) 0 0
\(766\) 1.64832e9 0.132508
\(767\) −9.04234e9 −0.723598
\(768\) 0 0
\(769\) −3.93748e9 −0.312231 −0.156116 0.987739i \(-0.549897\pi\)
−0.156116 + 0.987739i \(0.549897\pi\)
\(770\) 1.25716e9 0.0992372
\(771\) 0 0
\(772\) −3.00577e9 −0.235123
\(773\) 9.54261e9 0.743086 0.371543 0.928416i \(-0.378829\pi\)
0.371543 + 0.928416i \(0.378829\pi\)
\(774\) 0 0
\(775\) −1.46283e9 −0.112886
\(776\) 2.74646e10 2.10988
\(777\) 0 0
\(778\) −8.80967e9 −0.670704
\(779\) −1.39786e10 −1.05945
\(780\) 0 0
\(781\) −1.30105e10 −0.977269
\(782\) 3.43620e9 0.256953
\(783\) 0 0
\(784\) −6.10171e8 −0.0452216
\(785\) −4.60782e9 −0.339978
\(786\) 0 0
\(787\) 2.02204e10 1.47870 0.739349 0.673323i \(-0.235134\pi\)
0.739349 + 0.673323i \(0.235134\pi\)
\(788\) 5.63274e9 0.410089
\(789\) 0 0
\(790\) 4.31724e8 0.0311538
\(791\) −2.27307e9 −0.163303
\(792\) 0 0
\(793\) 7.30959e9 0.520519
\(794\) 1.24668e10 0.883857
\(795\) 0 0
\(796\) 1.01240e10 0.711468
\(797\) 1.55713e9 0.108948 0.0544741 0.998515i \(-0.482652\pi\)
0.0544741 + 0.998515i \(0.482652\pi\)
\(798\) 0 0
\(799\) −2.10129e10 −1.45738
\(800\) 2.43277e9 0.167991
\(801\) 0 0
\(802\) −9.79406e8 −0.0670428
\(803\) 2.22817e9 0.151860
\(804\) 0 0
\(805\) 1.04899e9 0.0708735
\(806\) −3.41192e9 −0.229523
\(807\) 0 0
\(808\) −2.37238e10 −1.58214
\(809\) −1.38275e10 −0.918170 −0.459085 0.888392i \(-0.651823\pi\)
−0.459085 + 0.888392i \(0.651823\pi\)
\(810\) 0 0
\(811\) 2.98876e10 1.96752 0.983758 0.179501i \(-0.0574482\pi\)
0.983758 + 0.179501i \(0.0574482\pi\)
\(812\) −1.89337e9 −0.124105
\(813\) 0 0
\(814\) −3.70906e9 −0.241034
\(815\) −7.53505e9 −0.487567
\(816\) 0 0
\(817\) 8.82996e9 0.566476
\(818\) −3.39540e9 −0.216897
\(819\) 0 0
\(820\) −4.05457e9 −0.256801
\(821\) 1.84955e10 1.16645 0.583224 0.812311i \(-0.301791\pi\)
0.583224 + 0.812311i \(0.301791\pi\)
\(822\) 0 0
\(823\) −2.85886e7 −0.00178769 −0.000893847 1.00000i \(-0.500285\pi\)
−0.000893847 1.00000i \(0.500285\pi\)
\(824\) 8.65223e9 0.538744
\(825\) 0 0
\(826\) 5.81538e9 0.359044
\(827\) −1.63130e10 −1.00291 −0.501457 0.865182i \(-0.667203\pi\)
−0.501457 + 0.865182i \(0.667203\pi\)
\(828\) 0 0
\(829\) 1.94409e9 0.118516 0.0592579 0.998243i \(-0.481127\pi\)
0.0592579 + 0.998243i \(0.481127\pi\)
\(830\) −1.50012e9 −0.0910652
\(831\) 0 0
\(832\) 8.60096e9 0.517744
\(833\) 1.99888e9 0.119820
\(834\) 0 0
\(835\) 7.60925e8 0.0452313
\(836\) −5.44222e9 −0.322147
\(837\) 0 0
\(838\) 7.75995e9 0.455517
\(839\) 7.14687e8 0.0417781 0.0208891 0.999782i \(-0.493350\pi\)
0.0208891 + 0.999782i \(0.493350\pi\)
\(840\) 0 0
\(841\) −8.69116e9 −0.503839
\(842\) −1.65946e10 −0.958018
\(843\) 0 0
\(844\) −2.84163e9 −0.162693
\(845\) 5.41398e9 0.308687
\(846\) 0 0
\(847\) 2.36849e9 0.133930
\(848\) 5.49805e9 0.309616
\(849\) 0 0
\(850\) 2.19449e9 0.122565
\(851\) −3.09486e9 −0.172142
\(852\) 0 0
\(853\) 7.55022e9 0.416522 0.208261 0.978073i \(-0.433220\pi\)
0.208261 + 0.978073i \(0.433220\pi\)
\(854\) −4.70100e9 −0.258278
\(855\) 0 0
\(856\) 3.87333e10 2.11070
\(857\) −3.37192e10 −1.82997 −0.914987 0.403483i \(-0.867799\pi\)
−0.914987 + 0.403483i \(0.867799\pi\)
\(858\) 0 0
\(859\) −2.78638e10 −1.49991 −0.749954 0.661490i \(-0.769925\pi\)
−0.749954 + 0.661490i \(0.769925\pi\)
\(860\) 2.56119e9 0.137308
\(861\) 0 0
\(862\) 4.40562e9 0.234278
\(863\) −3.07420e10 −1.62815 −0.814075 0.580760i \(-0.802755\pi\)
−0.814075 + 0.580760i \(0.802755\pi\)
\(864\) 0 0
\(865\) 1.29087e10 0.678151
\(866\) 2.22736e10 1.16541
\(867\) 0 0
\(868\) −1.91605e9 −0.0994459
\(869\) −1.48203e9 −0.0766103
\(870\) 0 0
\(871\) 1.03329e10 0.529856
\(872\) −1.15477e10 −0.589777
\(873\) 0 0
\(874\) 5.20049e9 0.263484
\(875\) 6.69922e8 0.0338062
\(876\) 0 0
\(877\) 8.59730e9 0.430391 0.215196 0.976571i \(-0.430961\pi\)
0.215196 + 0.976571i \(0.430961\pi\)
\(878\) −2.12907e10 −1.06159
\(879\) 0 0
\(880\) 2.29958e9 0.113752
\(881\) 6.86087e9 0.338036 0.169018 0.985613i \(-0.445940\pi\)
0.169018 + 0.985613i \(0.445940\pi\)
\(882\) 0 0
\(883\) −1.34116e10 −0.655569 −0.327784 0.944753i \(-0.606302\pi\)
−0.327784 + 0.944753i \(0.606302\pi\)
\(884\) −4.46938e9 −0.217603
\(885\) 0 0
\(886\) −4.45495e9 −0.215191
\(887\) −3.23054e10 −1.55433 −0.777163 0.629300i \(-0.783342\pi\)
−0.777163 + 0.629300i \(0.783342\pi\)
\(888\) 0 0
\(889\) −1.03020e10 −0.491774
\(890\) 7.15654e8 0.0340281
\(891\) 0 0
\(892\) 1.20434e10 0.568160
\(893\) −3.18018e10 −1.49441
\(894\) 0 0
\(895\) −5.60937e9 −0.261537
\(896\) 1.30422e9 0.0605721
\(897\) 0 0
\(898\) 1.72405e10 0.794480
\(899\) 8.66121e9 0.397576
\(900\) 0 0
\(901\) −1.80113e10 −0.820365
\(902\) −1.59399e10 −0.723208
\(903\) 0 0
\(904\) −1.02807e10 −0.462841
\(905\) 5.82825e9 0.261378
\(906\) 0 0
\(907\) 4.43045e10 1.97161 0.985807 0.167883i \(-0.0536931\pi\)
0.985807 + 0.167883i \(0.0536931\pi\)
\(908\) 7.67061e9 0.340039
\(909\) 0 0
\(910\) 1.56253e9 0.0687360
\(911\) 3.77401e10 1.65382 0.826910 0.562334i \(-0.190096\pi\)
0.826910 + 0.562334i \(0.190096\pi\)
\(912\) 0 0
\(913\) 5.14963e9 0.223938
\(914\) −2.28657e10 −0.990544
\(915\) 0 0
\(916\) 8.23160e9 0.353875
\(917\) −6.67918e9 −0.286043
\(918\) 0 0
\(919\) 4.52168e10 1.92174 0.960871 0.276996i \(-0.0893387\pi\)
0.960871 + 0.276996i \(0.0893387\pi\)
\(920\) 4.74436e9 0.200873
\(921\) 0 0
\(922\) 2.26838e10 0.953141
\(923\) −1.61707e10 −0.676898
\(924\) 0 0
\(925\) −1.97650e9 −0.0821108
\(926\) 4.74577e9 0.196412
\(927\) 0 0
\(928\) −1.44041e10 −0.591653
\(929\) 2.46341e10 1.00805 0.504025 0.863689i \(-0.331852\pi\)
0.504025 + 0.863689i \(0.331852\pi\)
\(930\) 0 0
\(931\) 3.02519e9 0.122865
\(932\) −9.36664e9 −0.378990
\(933\) 0 0
\(934\) −1.18384e10 −0.475421
\(935\) −7.53326e9 −0.301399
\(936\) 0 0
\(937\) 1.28125e10 0.508798 0.254399 0.967099i \(-0.418122\pi\)
0.254399 + 0.967099i \(0.418122\pi\)
\(938\) −6.64536e9 −0.262911
\(939\) 0 0
\(940\) −9.22431e9 −0.362232
\(941\) 3.61748e9 0.141528 0.0707640 0.997493i \(-0.477456\pi\)
0.0707640 + 0.997493i \(0.477456\pi\)
\(942\) 0 0
\(943\) −1.33004e10 −0.516502
\(944\) 1.06374e10 0.411558
\(945\) 0 0
\(946\) 1.00689e10 0.386690
\(947\) 3.37196e10 1.29020 0.645101 0.764097i \(-0.276815\pi\)
0.645101 + 0.764097i \(0.276815\pi\)
\(948\) 0 0
\(949\) 2.76939e9 0.105185
\(950\) 3.32123e9 0.125680
\(951\) 0 0
\(952\) 9.04057e9 0.339599
\(953\) 4.78636e10 1.79135 0.895675 0.444709i \(-0.146693\pi\)
0.895675 + 0.444709i \(0.146693\pi\)
\(954\) 0 0
\(955\) 5.26138e9 0.195474
\(956\) 1.40072e10 0.518500
\(957\) 0 0
\(958\) −6.55553e9 −0.240896
\(959\) 7.05832e9 0.258426
\(960\) 0 0
\(961\) −1.87477e10 −0.681421
\(962\) −4.61000e9 −0.166951
\(963\) 0 0
\(964\) −2.08870e9 −0.0750941
\(965\) −6.29692e9 −0.225571
\(966\) 0 0
\(967\) −4.12808e10 −1.46810 −0.734049 0.679096i \(-0.762372\pi\)
−0.734049 + 0.679096i \(0.762372\pi\)
\(968\) 1.07122e10 0.379591
\(969\) 0 0
\(970\) 1.82934e10 0.643567
\(971\) 4.22551e10 1.48119 0.740597 0.671950i \(-0.234543\pi\)
0.740597 + 0.671950i \(0.234543\pi\)
\(972\) 0 0
\(973\) −6.93930e8 −0.0241502
\(974\) −2.65798e10 −0.921712
\(975\) 0 0
\(976\) −8.59895e9 −0.296054
\(977\) −2.31359e10 −0.793697 −0.396848 0.917884i \(-0.629896\pi\)
−0.396848 + 0.917884i \(0.629896\pi\)
\(978\) 0 0
\(979\) −2.45671e9 −0.0836785
\(980\) 8.77476e8 0.0297813
\(981\) 0 0
\(982\) 1.78236e10 0.600627
\(983\) −4.54149e10 −1.52497 −0.762485 0.647006i \(-0.776021\pi\)
−0.762485 + 0.647006i \(0.776021\pi\)
\(984\) 0 0
\(985\) 1.18003e10 0.393428
\(986\) −1.29932e10 −0.431666
\(987\) 0 0
\(988\) −6.76415e9 −0.223133
\(989\) 8.40155e9 0.276167
\(990\) 0 0
\(991\) 1.57362e10 0.513621 0.256811 0.966462i \(-0.417328\pi\)
0.256811 + 0.966462i \(0.417328\pi\)
\(992\) −1.45766e10 −0.474094
\(993\) 0 0
\(994\) 1.03998e10 0.335872
\(995\) 2.12092e10 0.682564
\(996\) 0 0
\(997\) −2.87843e10 −0.919863 −0.459931 0.887954i \(-0.652126\pi\)
−0.459931 + 0.887954i \(0.652126\pi\)
\(998\) 1.98955e10 0.633573
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.i.1.3 4
3.2 odd 2 105.8.a.f.1.2 4
15.14 odd 2 525.8.a.k.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.f.1.2 4 3.2 odd 2
315.8.a.i.1.3 4 1.1 even 1 trivial
525.8.a.k.1.3 4 15.14 odd 2