Properties

Label 315.8.a.i.1.2
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 466x^{2} + 520x + 23440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.94744\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.94744 q^{2} -79.7331 q^{4} -125.000 q^{5} -343.000 q^{7} +1443.21 q^{8} +868.429 q^{10} -3452.43 q^{11} +2793.64 q^{13} +2382.97 q^{14} +179.217 q^{16} -20038.4 q^{17} +18051.5 q^{19} +9966.64 q^{20} +23985.5 q^{22} -35049.2 q^{23} +15625.0 q^{25} -19408.7 q^{26} +27348.5 q^{28} +63613.1 q^{29} +129406. q^{31} -185976. q^{32} +139216. q^{34} +42875.0 q^{35} +571412. q^{37} -125412. q^{38} -180402. q^{40} +49281.3 q^{41} -66688.6 q^{43} +275273. q^{44} +243502. q^{46} +954271. q^{47} +117649. q^{49} -108554. q^{50} -222746. q^{52} -148161. q^{53} +431553. q^{55} -495022. q^{56} -441948. q^{58} -1.07400e6 q^{59} +719682. q^{61} -899039. q^{62} +1.26912e6 q^{64} -349205. q^{65} +3.83495e6 q^{67} +1.59773e6 q^{68} -297871. q^{70} -3.15060e6 q^{71} -4.07755e6 q^{73} -3.96985e6 q^{74} -1.43930e6 q^{76} +1.18418e6 q^{77} -193472. q^{79} -22402.2 q^{80} -342379. q^{82} +2.97097e6 q^{83} +2.50480e6 q^{85} +463315. q^{86} -4.98258e6 q^{88} -1.06557e6 q^{89} -958220. q^{91} +2.79458e6 q^{92} -6.62973e6 q^{94} -2.25644e6 q^{95} +1.20795e6 q^{97} -817359. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 421 q^{4} - 500 q^{5} - 1372 q^{7} - 417 q^{8} - 125 q^{10} - 7852 q^{11} + 18532 q^{13} - 343 q^{14} + 47601 q^{16} - 33976 q^{17} + 22188 q^{19} - 52625 q^{20} + 18076 q^{22} + 22736 q^{23}+ \cdots + 117649 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.94744 −0.614072 −0.307036 0.951698i \(-0.599337\pi\)
−0.307036 + 0.951698i \(0.599337\pi\)
\(3\) 0 0
\(4\) −79.7331 −0.622915
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) 1443.21 0.996587
\(9\) 0 0
\(10\) 868.429 0.274621
\(11\) −3452.43 −0.782078 −0.391039 0.920374i \(-0.627884\pi\)
−0.391039 + 0.920374i \(0.627884\pi\)
\(12\) 0 0
\(13\) 2793.64 0.352671 0.176335 0.984330i \(-0.443576\pi\)
0.176335 + 0.984330i \(0.443576\pi\)
\(14\) 2382.97 0.232098
\(15\) 0 0
\(16\) 179.217 0.0109386
\(17\) −20038.4 −0.989219 −0.494610 0.869115i \(-0.664689\pi\)
−0.494610 + 0.869115i \(0.664689\pi\)
\(18\) 0 0
\(19\) 18051.5 0.603777 0.301888 0.953343i \(-0.402383\pi\)
0.301888 + 0.953343i \(0.402383\pi\)
\(20\) 9966.64 0.278576
\(21\) 0 0
\(22\) 23985.5 0.480252
\(23\) −35049.2 −0.600663 −0.300332 0.953835i \(-0.597097\pi\)
−0.300332 + 0.953835i \(0.597097\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) −19408.7 −0.216565
\(27\) 0 0
\(28\) 27348.5 0.235440
\(29\) 63613.1 0.484344 0.242172 0.970233i \(-0.422140\pi\)
0.242172 + 0.970233i \(0.422140\pi\)
\(30\) 0 0
\(31\) 129406. 0.780168 0.390084 0.920779i \(-0.372446\pi\)
0.390084 + 0.920779i \(0.372446\pi\)
\(32\) −185976. −1.00330
\(33\) 0 0
\(34\) 139216. 0.607452
\(35\) 42875.0 0.169031
\(36\) 0 0
\(37\) 571412. 1.85457 0.927286 0.374354i \(-0.122136\pi\)
0.927286 + 0.374354i \(0.122136\pi\)
\(38\) −125412. −0.370762
\(39\) 0 0
\(40\) −180402. −0.445687
\(41\) 49281.3 0.111671 0.0558353 0.998440i \(-0.482218\pi\)
0.0558353 + 0.998440i \(0.482218\pi\)
\(42\) 0 0
\(43\) −66688.6 −0.127912 −0.0639561 0.997953i \(-0.520372\pi\)
−0.0639561 + 0.997953i \(0.520372\pi\)
\(44\) 275273. 0.487168
\(45\) 0 0
\(46\) 243502. 0.368851
\(47\) 954271. 1.34069 0.670346 0.742049i \(-0.266146\pi\)
0.670346 + 0.742049i \(0.266146\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) −108554. −0.122814
\(51\) 0 0
\(52\) −222746. −0.219684
\(53\) −148161. −0.136700 −0.0683501 0.997661i \(-0.521773\pi\)
−0.0683501 + 0.997661i \(0.521773\pi\)
\(54\) 0 0
\(55\) 431553. 0.349756
\(56\) −495022. −0.376675
\(57\) 0 0
\(58\) −441948. −0.297422
\(59\) −1.07400e6 −0.680802 −0.340401 0.940280i \(-0.610563\pi\)
−0.340401 + 0.940280i \(0.610563\pi\)
\(60\) 0 0
\(61\) 719682. 0.405963 0.202981 0.979183i \(-0.434937\pi\)
0.202981 + 0.979183i \(0.434937\pi\)
\(62\) −899039. −0.479079
\(63\) 0 0
\(64\) 1.26912e6 0.605163
\(65\) −349205. −0.157719
\(66\) 0 0
\(67\) 3.83495e6 1.55775 0.778874 0.627180i \(-0.215791\pi\)
0.778874 + 0.627180i \(0.215791\pi\)
\(68\) 1.59773e6 0.616200
\(69\) 0 0
\(70\) −297871. −0.103797
\(71\) −3.15060e6 −1.04470 −0.522348 0.852733i \(-0.674944\pi\)
−0.522348 + 0.852733i \(0.674944\pi\)
\(72\) 0 0
\(73\) −4.07755e6 −1.22679 −0.613393 0.789778i \(-0.710196\pi\)
−0.613393 + 0.789778i \(0.710196\pi\)
\(74\) −3.96985e6 −1.13884
\(75\) 0 0
\(76\) −1.43930e6 −0.376102
\(77\) 1.18418e6 0.295598
\(78\) 0 0
\(79\) −193472. −0.0441492 −0.0220746 0.999756i \(-0.507027\pi\)
−0.0220746 + 0.999756i \(0.507027\pi\)
\(80\) −22402.2 −0.00489187
\(81\) 0 0
\(82\) −342379. −0.0685738
\(83\) 2.97097e6 0.570329 0.285165 0.958479i \(-0.407952\pi\)
0.285165 + 0.958479i \(0.407952\pi\)
\(84\) 0 0
\(85\) 2.50480e6 0.442392
\(86\) 463315. 0.0785473
\(87\) 0 0
\(88\) −4.98258e6 −0.779409
\(89\) −1.06557e6 −0.160220 −0.0801102 0.996786i \(-0.525527\pi\)
−0.0801102 + 0.996786i \(0.525527\pi\)
\(90\) 0 0
\(91\) −958220. −0.133297
\(92\) 2.79458e6 0.374162
\(93\) 0 0
\(94\) −6.62973e6 −0.823282
\(95\) −2.25644e6 −0.270017
\(96\) 0 0
\(97\) 1.20795e6 0.134384 0.0671921 0.997740i \(-0.478596\pi\)
0.0671921 + 0.997740i \(0.478596\pi\)
\(98\) −817359. −0.0877246
\(99\) 0 0
\(100\) −1.24583e6 −0.124583
\(101\) 1.06399e7 1.02757 0.513785 0.857919i \(-0.328243\pi\)
0.513785 + 0.857919i \(0.328243\pi\)
\(102\) 0 0
\(103\) −3.41075e6 −0.307553 −0.153777 0.988106i \(-0.549144\pi\)
−0.153777 + 0.988106i \(0.549144\pi\)
\(104\) 4.03182e6 0.351467
\(105\) 0 0
\(106\) 1.02934e6 0.0839438
\(107\) 2.18626e7 1.72528 0.862639 0.505821i \(-0.168810\pi\)
0.862639 + 0.505821i \(0.168810\pi\)
\(108\) 0 0
\(109\) −1.20019e7 −0.887679 −0.443839 0.896106i \(-0.646384\pi\)
−0.443839 + 0.896106i \(0.646384\pi\)
\(110\) −2.99819e6 −0.214775
\(111\) 0 0
\(112\) −61471.6 −0.00413439
\(113\) −1.35164e6 −0.0881223 −0.0440612 0.999029i \(-0.514030\pi\)
−0.0440612 + 0.999029i \(0.514030\pi\)
\(114\) 0 0
\(115\) 4.38115e6 0.268625
\(116\) −5.07207e6 −0.301705
\(117\) 0 0
\(118\) 7.46152e6 0.418062
\(119\) 6.87318e6 0.373890
\(120\) 0 0
\(121\) −7.56793e6 −0.388354
\(122\) −4.99994e6 −0.249290
\(123\) 0 0
\(124\) −1.03179e7 −0.485978
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) −3.77606e7 −1.63578 −0.817891 0.575373i \(-0.804857\pi\)
−0.817891 + 0.575373i \(0.804857\pi\)
\(128\) 1.49878e7 0.631691
\(129\) 0 0
\(130\) 2.42608e6 0.0968509
\(131\) −2.35027e7 −0.913415 −0.456708 0.889617i \(-0.650971\pi\)
−0.456708 + 0.889617i \(0.650971\pi\)
\(132\) 0 0
\(133\) −6.19167e6 −0.228206
\(134\) −2.66430e7 −0.956570
\(135\) 0 0
\(136\) −2.89197e7 −0.985843
\(137\) −3.19349e7 −1.06107 −0.530534 0.847664i \(-0.678008\pi\)
−0.530534 + 0.847664i \(0.678008\pi\)
\(138\) 0 0
\(139\) −4.48717e7 −1.41717 −0.708584 0.705627i \(-0.750665\pi\)
−0.708584 + 0.705627i \(0.750665\pi\)
\(140\) −3.41856e6 −0.105292
\(141\) 0 0
\(142\) 2.18886e7 0.641518
\(143\) −9.64485e6 −0.275816
\(144\) 0 0
\(145\) −7.95164e6 −0.216605
\(146\) 2.83285e7 0.753336
\(147\) 0 0
\(148\) −4.55605e7 −1.15524
\(149\) 3.92484e7 0.972009 0.486004 0.873956i \(-0.338454\pi\)
0.486004 + 0.873956i \(0.338454\pi\)
\(150\) 0 0
\(151\) 4.49467e7 1.06238 0.531188 0.847254i \(-0.321746\pi\)
0.531188 + 0.847254i \(0.321746\pi\)
\(152\) 2.60522e7 0.601716
\(153\) 0 0
\(154\) −8.22703e6 −0.181518
\(155\) −1.61757e7 −0.348902
\(156\) 0 0
\(157\) −2.20027e7 −0.453762 −0.226881 0.973922i \(-0.572853\pi\)
−0.226881 + 0.973922i \(0.572853\pi\)
\(158\) 1.34413e6 0.0271108
\(159\) 0 0
\(160\) 2.32470e7 0.448691
\(161\) 1.20219e7 0.227029
\(162\) 0 0
\(163\) −2.65265e7 −0.479759 −0.239880 0.970803i \(-0.577108\pi\)
−0.239880 + 0.970803i \(0.577108\pi\)
\(164\) −3.92935e6 −0.0695613
\(165\) 0 0
\(166\) −2.06407e7 −0.350223
\(167\) −9.48493e7 −1.57589 −0.787946 0.615744i \(-0.788855\pi\)
−0.787946 + 0.615744i \(0.788855\pi\)
\(168\) 0 0
\(169\) −5.49441e7 −0.875623
\(170\) −1.74020e7 −0.271661
\(171\) 0 0
\(172\) 5.31729e6 0.0796784
\(173\) −5.00570e7 −0.735027 −0.367513 0.930018i \(-0.619791\pi\)
−0.367513 + 0.930018i \(0.619791\pi\)
\(174\) 0 0
\(175\) −5.35938e6 −0.0755929
\(176\) −618735. −0.00855481
\(177\) 0 0
\(178\) 7.40299e6 0.0983869
\(179\) −5.16805e7 −0.673505 −0.336753 0.941593i \(-0.609329\pi\)
−0.336753 + 0.941593i \(0.609329\pi\)
\(180\) 0 0
\(181\) 1.21438e8 1.52223 0.761117 0.648615i \(-0.224651\pi\)
0.761117 + 0.648615i \(0.224651\pi\)
\(182\) 6.65717e6 0.0818540
\(183\) 0 0
\(184\) −5.05835e7 −0.598613
\(185\) −7.14265e7 −0.829390
\(186\) 0 0
\(187\) 6.91812e7 0.773646
\(188\) −7.60870e7 −0.835137
\(189\) 0 0
\(190\) 1.56765e7 0.165810
\(191\) −1.25895e8 −1.30735 −0.653674 0.756776i \(-0.726773\pi\)
−0.653674 + 0.756776i \(0.726773\pi\)
\(192\) 0 0
\(193\) −1.01607e8 −1.01736 −0.508679 0.860956i \(-0.669866\pi\)
−0.508679 + 0.860956i \(0.669866\pi\)
\(194\) −8.39216e6 −0.0825216
\(195\) 0 0
\(196\) −9.38052e6 −0.0889879
\(197\) −1.64940e8 −1.53707 −0.768537 0.639805i \(-0.779015\pi\)
−0.768537 + 0.639805i \(0.779015\pi\)
\(198\) 0 0
\(199\) 426671. 0.00383802 0.00191901 0.999998i \(-0.499389\pi\)
0.00191901 + 0.999998i \(0.499389\pi\)
\(200\) 2.25502e7 0.199317
\(201\) 0 0
\(202\) −7.39198e7 −0.631003
\(203\) −2.18193e7 −0.183065
\(204\) 0 0
\(205\) −6.16016e6 −0.0499406
\(206\) 2.36960e7 0.188860
\(207\) 0 0
\(208\) 500669. 0.00385771
\(209\) −6.23215e7 −0.472200
\(210\) 0 0
\(211\) −6.72814e7 −0.493067 −0.246534 0.969134i \(-0.579292\pi\)
−0.246534 + 0.969134i \(0.579292\pi\)
\(212\) 1.18134e7 0.0851526
\(213\) 0 0
\(214\) −1.51889e8 −1.05944
\(215\) 8.33607e6 0.0572041
\(216\) 0 0
\(217\) −4.43862e7 −0.294876
\(218\) 8.33821e7 0.545099
\(219\) 0 0
\(220\) −3.44091e7 −0.217868
\(221\) −5.59802e7 −0.348869
\(222\) 0 0
\(223\) 1.52978e8 0.923764 0.461882 0.886941i \(-0.347174\pi\)
0.461882 + 0.886941i \(0.347174\pi\)
\(224\) 6.37899e7 0.379213
\(225\) 0 0
\(226\) 9.39042e6 0.0541135
\(227\) −1.04776e8 −0.594527 −0.297264 0.954795i \(-0.596074\pi\)
−0.297264 + 0.954795i \(0.596074\pi\)
\(228\) 0 0
\(229\) −1.79834e7 −0.0989570 −0.0494785 0.998775i \(-0.515756\pi\)
−0.0494785 + 0.998775i \(0.515756\pi\)
\(230\) −3.04378e7 −0.164955
\(231\) 0 0
\(232\) 9.18072e7 0.482691
\(233\) 1.69751e8 0.879158 0.439579 0.898204i \(-0.355128\pi\)
0.439579 + 0.898204i \(0.355128\pi\)
\(234\) 0 0
\(235\) −1.19284e8 −0.599576
\(236\) 8.56332e7 0.424082
\(237\) 0 0
\(238\) −4.77510e7 −0.229595
\(239\) 8.37721e7 0.396924 0.198462 0.980109i \(-0.436405\pi\)
0.198462 + 0.980109i \(0.436405\pi\)
\(240\) 0 0
\(241\) −1.31188e8 −0.603718 −0.301859 0.953353i \(-0.597607\pi\)
−0.301859 + 0.953353i \(0.597607\pi\)
\(242\) 5.25777e7 0.238478
\(243\) 0 0
\(244\) −5.73825e7 −0.252880
\(245\) −1.47061e7 −0.0638877
\(246\) 0 0
\(247\) 5.04295e7 0.212934
\(248\) 1.86760e8 0.777505
\(249\) 0 0
\(250\) 1.35692e7 0.0549243
\(251\) 7.04199e7 0.281085 0.140542 0.990075i \(-0.455115\pi\)
0.140542 + 0.990075i \(0.455115\pi\)
\(252\) 0 0
\(253\) 1.21005e8 0.469765
\(254\) 2.62339e8 1.00449
\(255\) 0 0
\(256\) −2.66574e8 −0.993067
\(257\) −4.12149e8 −1.51457 −0.757284 0.653086i \(-0.773474\pi\)
−0.757284 + 0.653086i \(0.773474\pi\)
\(258\) 0 0
\(259\) −1.95994e8 −0.700962
\(260\) 2.78432e7 0.0982456
\(261\) 0 0
\(262\) 1.63283e8 0.560903
\(263\) 4.74805e8 1.60942 0.804712 0.593665i \(-0.202320\pi\)
0.804712 + 0.593665i \(0.202320\pi\)
\(264\) 0 0
\(265\) 1.85201e7 0.0611342
\(266\) 4.30162e7 0.140135
\(267\) 0 0
\(268\) −3.05772e8 −0.970345
\(269\) 7.22505e7 0.226312 0.113156 0.993577i \(-0.463904\pi\)
0.113156 + 0.993577i \(0.463904\pi\)
\(270\) 0 0
\(271\) 2.53457e8 0.773590 0.386795 0.922166i \(-0.373582\pi\)
0.386795 + 0.922166i \(0.373582\pi\)
\(272\) −3.59124e6 −0.0108206
\(273\) 0 0
\(274\) 2.21865e8 0.651572
\(275\) −5.39442e7 −0.156416
\(276\) 0 0
\(277\) 5.05351e8 1.42861 0.714306 0.699834i \(-0.246743\pi\)
0.714306 + 0.699834i \(0.246743\pi\)
\(278\) 3.11743e8 0.870243
\(279\) 0 0
\(280\) 6.18777e7 0.168454
\(281\) 4.71397e7 0.126740 0.0633701 0.997990i \(-0.479815\pi\)
0.0633701 + 0.997990i \(0.479815\pi\)
\(282\) 0 0
\(283\) −1.29781e8 −0.340377 −0.170188 0.985412i \(-0.554438\pi\)
−0.170188 + 0.985412i \(0.554438\pi\)
\(284\) 2.51208e8 0.650757
\(285\) 0 0
\(286\) 6.70070e7 0.169371
\(287\) −1.69035e7 −0.0422075
\(288\) 0 0
\(289\) −8.79979e6 −0.0214452
\(290\) 5.52435e7 0.133011
\(291\) 0 0
\(292\) 3.25116e8 0.764184
\(293\) −4.59414e8 −1.06701 −0.533504 0.845797i \(-0.679125\pi\)
−0.533504 + 0.845797i \(0.679125\pi\)
\(294\) 0 0
\(295\) 1.34250e8 0.304464
\(296\) 8.24669e8 1.84824
\(297\) 0 0
\(298\) −2.72676e8 −0.596884
\(299\) −9.79150e7 −0.211836
\(300\) 0 0
\(301\) 2.28742e7 0.0483463
\(302\) −3.12264e8 −0.652376
\(303\) 0 0
\(304\) 3.23515e6 0.00660445
\(305\) −8.99602e7 −0.181552
\(306\) 0 0
\(307\) 5.63910e8 1.11231 0.556155 0.831079i \(-0.312276\pi\)
0.556155 + 0.831079i \(0.312276\pi\)
\(308\) −9.44186e7 −0.184132
\(309\) 0 0
\(310\) 1.12380e8 0.214251
\(311\) 8.71276e8 1.64246 0.821229 0.570599i \(-0.193289\pi\)
0.821229 + 0.570599i \(0.193289\pi\)
\(312\) 0 0
\(313\) −5.05856e8 −0.932442 −0.466221 0.884668i \(-0.654385\pi\)
−0.466221 + 0.884668i \(0.654385\pi\)
\(314\) 1.52863e8 0.278643
\(315\) 0 0
\(316\) 1.54261e7 0.0275012
\(317\) −9.91394e7 −0.174799 −0.0873995 0.996173i \(-0.527856\pi\)
−0.0873995 + 0.996173i \(0.527856\pi\)
\(318\) 0 0
\(319\) −2.19620e8 −0.378794
\(320\) −1.58640e8 −0.270637
\(321\) 0 0
\(322\) −8.35212e7 −0.139412
\(323\) −3.61724e8 −0.597267
\(324\) 0 0
\(325\) 4.36507e7 0.0705341
\(326\) 1.84291e8 0.294607
\(327\) 0 0
\(328\) 7.11234e7 0.111289
\(329\) −3.27315e8 −0.506734
\(330\) 0 0
\(331\) 5.09577e8 0.772346 0.386173 0.922426i \(-0.373797\pi\)
0.386173 + 0.922426i \(0.373797\pi\)
\(332\) −2.36885e8 −0.355267
\(333\) 0 0
\(334\) 6.58959e8 0.967712
\(335\) −4.79368e8 −0.696646
\(336\) 0 0
\(337\) 1.18599e9 1.68801 0.844005 0.536336i \(-0.180192\pi\)
0.844005 + 0.536336i \(0.180192\pi\)
\(338\) 3.81720e8 0.537696
\(339\) 0 0
\(340\) −1.99716e8 −0.275573
\(341\) −4.46764e8 −0.610152
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) −9.62458e7 −0.127476
\(345\) 0 0
\(346\) 3.47767e8 0.451360
\(347\) 7.02435e8 0.902512 0.451256 0.892395i \(-0.350976\pi\)
0.451256 + 0.892395i \(0.350976\pi\)
\(348\) 0 0
\(349\) −5.46813e8 −0.688572 −0.344286 0.938865i \(-0.611879\pi\)
−0.344286 + 0.938865i \(0.611879\pi\)
\(350\) 3.72339e7 0.0464195
\(351\) 0 0
\(352\) 6.42069e8 0.784662
\(353\) 1.66629e8 0.201622 0.100811 0.994906i \(-0.467856\pi\)
0.100811 + 0.994906i \(0.467856\pi\)
\(354\) 0 0
\(355\) 3.93826e8 0.467202
\(356\) 8.49614e7 0.0998037
\(357\) 0 0
\(358\) 3.59047e8 0.413581
\(359\) 6.10709e8 0.696633 0.348316 0.937377i \(-0.386754\pi\)
0.348316 + 0.937377i \(0.386754\pi\)
\(360\) 0 0
\(361\) −5.68014e8 −0.635454
\(362\) −8.43686e8 −0.934762
\(363\) 0 0
\(364\) 7.64019e7 0.0830327
\(365\) 5.09693e8 0.548636
\(366\) 0 0
\(367\) −1.43810e9 −1.51865 −0.759325 0.650712i \(-0.774471\pi\)
−0.759325 + 0.650712i \(0.774471\pi\)
\(368\) −6.28143e6 −0.00657039
\(369\) 0 0
\(370\) 4.96231e8 0.509305
\(371\) 5.08193e7 0.0516678
\(372\) 0 0
\(373\) −3.01792e8 −0.301111 −0.150555 0.988602i \(-0.548106\pi\)
−0.150555 + 0.988602i \(0.548106\pi\)
\(374\) −4.80632e8 −0.475075
\(375\) 0 0
\(376\) 1.37722e9 1.33612
\(377\) 1.77712e8 0.170814
\(378\) 0 0
\(379\) −7.89548e8 −0.744975 −0.372487 0.928037i \(-0.621495\pi\)
−0.372487 + 0.928037i \(0.621495\pi\)
\(380\) 1.79913e8 0.168198
\(381\) 0 0
\(382\) 8.74647e8 0.802807
\(383\) −2.00883e9 −1.82703 −0.913517 0.406800i \(-0.866645\pi\)
−0.913517 + 0.406800i \(0.866645\pi\)
\(384\) 0 0
\(385\) −1.48023e8 −0.132195
\(386\) 7.05909e8 0.624732
\(387\) 0 0
\(388\) −9.63138e7 −0.0837100
\(389\) 1.44433e9 1.24407 0.622033 0.782991i \(-0.286307\pi\)
0.622033 + 0.782991i \(0.286307\pi\)
\(390\) 0 0
\(391\) 7.02331e8 0.594187
\(392\) 1.69793e8 0.142370
\(393\) 0 0
\(394\) 1.14591e9 0.943875
\(395\) 2.41840e7 0.0197441
\(396\) 0 0
\(397\) 7.42825e8 0.595826 0.297913 0.954593i \(-0.403709\pi\)
0.297913 + 0.954593i \(0.403709\pi\)
\(398\) −2.96427e6 −0.00235682
\(399\) 0 0
\(400\) 2.80027e6 0.00218771
\(401\) 1.60084e8 0.123978 0.0619889 0.998077i \(-0.480256\pi\)
0.0619889 + 0.998077i \(0.480256\pi\)
\(402\) 0 0
\(403\) 3.61514e8 0.275142
\(404\) −8.48351e8 −0.640089
\(405\) 0 0
\(406\) 1.51588e8 0.112415
\(407\) −1.97276e9 −1.45042
\(408\) 0 0
\(409\) −1.66930e9 −1.20643 −0.603216 0.797578i \(-0.706114\pi\)
−0.603216 + 0.797578i \(0.706114\pi\)
\(410\) 4.27973e7 0.0306671
\(411\) 0 0
\(412\) 2.71950e8 0.191579
\(413\) 3.68381e8 0.257319
\(414\) 0 0
\(415\) −3.71372e8 −0.255059
\(416\) −5.19552e8 −0.353836
\(417\) 0 0
\(418\) 4.32975e8 0.289965
\(419\) 5.13361e8 0.340937 0.170468 0.985363i \(-0.445472\pi\)
0.170468 + 0.985363i \(0.445472\pi\)
\(420\) 0 0
\(421\) 1.95356e9 1.27597 0.637984 0.770050i \(-0.279769\pi\)
0.637984 + 0.770050i \(0.279769\pi\)
\(422\) 4.67433e8 0.302779
\(423\) 0 0
\(424\) −2.13828e8 −0.136234
\(425\) −3.13101e8 −0.197844
\(426\) 0 0
\(427\) −2.46851e8 −0.153439
\(428\) −1.74318e9 −1.07470
\(429\) 0 0
\(430\) −5.79143e7 −0.0351274
\(431\) 1.53975e9 0.926361 0.463180 0.886264i \(-0.346708\pi\)
0.463180 + 0.886264i \(0.346708\pi\)
\(432\) 0 0
\(433\) −1.72864e9 −1.02328 −0.511642 0.859199i \(-0.670963\pi\)
−0.511642 + 0.859199i \(0.670963\pi\)
\(434\) 3.08370e8 0.181075
\(435\) 0 0
\(436\) 9.56946e8 0.552948
\(437\) −6.32692e8 −0.362666
\(438\) 0 0
\(439\) 2.80622e9 1.58306 0.791528 0.611132i \(-0.209286\pi\)
0.791528 + 0.611132i \(0.209286\pi\)
\(440\) 6.22823e8 0.348562
\(441\) 0 0
\(442\) 3.88919e8 0.214231
\(443\) −6.73039e8 −0.367813 −0.183907 0.982944i \(-0.558874\pi\)
−0.183907 + 0.982944i \(0.558874\pi\)
\(444\) 0 0
\(445\) 1.33196e8 0.0716527
\(446\) −1.06280e9 −0.567258
\(447\) 0 0
\(448\) −4.35308e8 −0.228730
\(449\) −8.59815e8 −0.448273 −0.224137 0.974558i \(-0.571956\pi\)
−0.224137 + 0.974558i \(0.571956\pi\)
\(450\) 0 0
\(451\) −1.70140e8 −0.0873351
\(452\) 1.07770e8 0.0548927
\(453\) 0 0
\(454\) 7.27925e8 0.365083
\(455\) 1.19777e8 0.0596122
\(456\) 0 0
\(457\) −1.85328e9 −0.908312 −0.454156 0.890922i \(-0.650059\pi\)
−0.454156 + 0.890922i \(0.650059\pi\)
\(458\) 1.24938e8 0.0607668
\(459\) 0 0
\(460\) −3.49323e8 −0.167330
\(461\) 5.84090e8 0.277668 0.138834 0.990316i \(-0.455665\pi\)
0.138834 + 0.990316i \(0.455665\pi\)
\(462\) 0 0
\(463\) −3.10502e9 −1.45389 −0.726945 0.686696i \(-0.759060\pi\)
−0.726945 + 0.686696i \(0.759060\pi\)
\(464\) 1.14006e7 0.00529802
\(465\) 0 0
\(466\) −1.17933e9 −0.539866
\(467\) 2.39617e9 1.08870 0.544350 0.838858i \(-0.316776\pi\)
0.544350 + 0.838858i \(0.316776\pi\)
\(468\) 0 0
\(469\) −1.31539e9 −0.588774
\(470\) 8.28717e8 0.368183
\(471\) 0 0
\(472\) −1.55001e9 −0.678479
\(473\) 2.30237e8 0.100037
\(474\) 0 0
\(475\) 2.82055e8 0.120755
\(476\) −5.48021e8 −0.232902
\(477\) 0 0
\(478\) −5.82001e8 −0.243740
\(479\) −3.11093e6 −0.00129335 −0.000646675 1.00000i \(-0.500206\pi\)
−0.000646675 1.00000i \(0.500206\pi\)
\(480\) 0 0
\(481\) 1.59632e9 0.654053
\(482\) 9.11420e8 0.370727
\(483\) 0 0
\(484\) 6.03415e8 0.241912
\(485\) −1.50994e8 −0.0600985
\(486\) 0 0
\(487\) −3.45835e9 −1.35681 −0.678403 0.734690i \(-0.737328\pi\)
−0.678403 + 0.734690i \(0.737328\pi\)
\(488\) 1.03865e9 0.404577
\(489\) 0 0
\(490\) 1.02170e8 0.0392316
\(491\) −1.87982e9 −0.716690 −0.358345 0.933589i \(-0.616659\pi\)
−0.358345 + 0.933589i \(0.616659\pi\)
\(492\) 0 0
\(493\) −1.27471e9 −0.479122
\(494\) −3.50356e8 −0.130757
\(495\) 0 0
\(496\) 2.31918e7 0.00853391
\(497\) 1.08066e9 0.394858
\(498\) 0 0
\(499\) −2.98642e9 −1.07597 −0.537984 0.842955i \(-0.680814\pi\)
−0.537984 + 0.842955i \(0.680814\pi\)
\(500\) 1.55729e8 0.0557152
\(501\) 0 0
\(502\) −4.89238e8 −0.172606
\(503\) −2.95022e9 −1.03363 −0.516817 0.856096i \(-0.672883\pi\)
−0.516817 + 0.856096i \(0.672883\pi\)
\(504\) 0 0
\(505\) −1.32998e9 −0.459544
\(506\) −8.40673e8 −0.288470
\(507\) 0 0
\(508\) 3.01077e9 1.01895
\(509\) 2.57436e9 0.865280 0.432640 0.901567i \(-0.357582\pi\)
0.432640 + 0.901567i \(0.357582\pi\)
\(510\) 0 0
\(511\) 1.39860e9 0.463682
\(512\) −6.64372e7 −0.0218759
\(513\) 0 0
\(514\) 2.86338e9 0.930054
\(515\) 4.26344e8 0.137542
\(516\) 0 0
\(517\) −3.29455e9 −1.04853
\(518\) 1.36166e9 0.430441
\(519\) 0 0
\(520\) −5.03978e8 −0.157181
\(521\) 2.20184e9 0.682109 0.341054 0.940044i \(-0.389216\pi\)
0.341054 + 0.940044i \(0.389216\pi\)
\(522\) 0 0
\(523\) 6.06489e8 0.185382 0.0926909 0.995695i \(-0.470453\pi\)
0.0926909 + 0.995695i \(0.470453\pi\)
\(524\) 1.87394e9 0.568980
\(525\) 0 0
\(526\) −3.29868e9 −0.988303
\(527\) −2.59309e9 −0.771757
\(528\) 0 0
\(529\) −2.17638e9 −0.639204
\(530\) −1.28668e8 −0.0375408
\(531\) 0 0
\(532\) 4.93682e8 0.142153
\(533\) 1.37674e8 0.0393829
\(534\) 0 0
\(535\) −2.73283e9 −0.771567
\(536\) 5.53464e9 1.55243
\(537\) 0 0
\(538\) −5.01955e8 −0.138972
\(539\) −4.06174e8 −0.111725
\(540\) 0 0
\(541\) 2.42481e7 0.00658395 0.00329197 0.999995i \(-0.498952\pi\)
0.00329197 + 0.999995i \(0.498952\pi\)
\(542\) −1.76087e9 −0.475040
\(543\) 0 0
\(544\) 3.72667e9 0.992488
\(545\) 1.50023e9 0.396982
\(546\) 0 0
\(547\) −5.54093e8 −0.144753 −0.0723764 0.997377i \(-0.523058\pi\)
−0.0723764 + 0.997377i \(0.523058\pi\)
\(548\) 2.54627e9 0.660955
\(549\) 0 0
\(550\) 3.74774e8 0.0960505
\(551\) 1.14831e9 0.292435
\(552\) 0 0
\(553\) 6.63609e7 0.0166868
\(554\) −3.51089e9 −0.877271
\(555\) 0 0
\(556\) 3.57776e9 0.882775
\(557\) 5.51883e9 1.35317 0.676587 0.736363i \(-0.263458\pi\)
0.676587 + 0.736363i \(0.263458\pi\)
\(558\) 0 0
\(559\) −1.86304e8 −0.0451109
\(560\) 7.68395e6 0.00184895
\(561\) 0 0
\(562\) −3.27500e8 −0.0778276
\(563\) −7.95448e9 −1.87859 −0.939296 0.343109i \(-0.888520\pi\)
−0.939296 + 0.343109i \(0.888520\pi\)
\(564\) 0 0
\(565\) 1.68955e8 0.0394095
\(566\) 9.01648e8 0.209016
\(567\) 0 0
\(568\) −4.54699e9 −1.04113
\(569\) 3.19008e9 0.725953 0.362976 0.931798i \(-0.381761\pi\)
0.362976 + 0.931798i \(0.381761\pi\)
\(570\) 0 0
\(571\) 2.73377e9 0.614520 0.307260 0.951626i \(-0.400588\pi\)
0.307260 + 0.951626i \(0.400588\pi\)
\(572\) 7.69014e8 0.171810
\(573\) 0 0
\(574\) 1.17436e8 0.0259185
\(575\) −5.47644e8 −0.120133
\(576\) 0 0
\(577\) −6.38537e9 −1.38379 −0.691895 0.721998i \(-0.743224\pi\)
−0.691895 + 0.721998i \(0.743224\pi\)
\(578\) 6.11360e7 0.0131689
\(579\) 0 0
\(580\) 6.34009e8 0.134927
\(581\) −1.01904e9 −0.215564
\(582\) 0 0
\(583\) 5.11516e8 0.106910
\(584\) −5.88477e9 −1.22260
\(585\) 0 0
\(586\) 3.19175e9 0.655220
\(587\) −6.65567e9 −1.35818 −0.679091 0.734054i \(-0.737626\pi\)
−0.679091 + 0.734054i \(0.737626\pi\)
\(588\) 0 0
\(589\) 2.33597e9 0.471047
\(590\) −9.32691e8 −0.186963
\(591\) 0 0
\(592\) 1.02407e8 0.0202863
\(593\) −1.46920e9 −0.289327 −0.144663 0.989481i \(-0.546210\pi\)
−0.144663 + 0.989481i \(0.546210\pi\)
\(594\) 0 0
\(595\) −8.59148e8 −0.167209
\(596\) −3.12940e9 −0.605479
\(597\) 0 0
\(598\) 6.80258e8 0.130083
\(599\) −9.43186e9 −1.79310 −0.896548 0.442947i \(-0.853933\pi\)
−0.896548 + 0.442947i \(0.853933\pi\)
\(600\) 0 0
\(601\) 8.07554e8 0.151744 0.0758719 0.997118i \(-0.475826\pi\)
0.0758719 + 0.997118i \(0.475826\pi\)
\(602\) −1.58917e8 −0.0296881
\(603\) 0 0
\(604\) −3.58374e9 −0.661771
\(605\) 9.45991e8 0.173677
\(606\) 0 0
\(607\) −7.93485e9 −1.44005 −0.720027 0.693947i \(-0.755870\pi\)
−0.720027 + 0.693947i \(0.755870\pi\)
\(608\) −3.35716e9 −0.605772
\(609\) 0 0
\(610\) 6.24993e8 0.111486
\(611\) 2.66589e9 0.472823
\(612\) 0 0
\(613\) −1.79108e8 −0.0314053 −0.0157027 0.999877i \(-0.504999\pi\)
−0.0157027 + 0.999877i \(0.504999\pi\)
\(614\) −3.91773e9 −0.683039
\(615\) 0 0
\(616\) 1.70903e9 0.294589
\(617\) −4.58991e9 −0.786695 −0.393347 0.919390i \(-0.628683\pi\)
−0.393347 + 0.919390i \(0.628683\pi\)
\(618\) 0 0
\(619\) 4.19664e9 0.711189 0.355594 0.934640i \(-0.384278\pi\)
0.355594 + 0.934640i \(0.384278\pi\)
\(620\) 1.28974e9 0.217336
\(621\) 0 0
\(622\) −6.05313e9 −1.00859
\(623\) 3.65491e8 0.0605576
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 3.51440e9 0.572587
\(627\) 0 0
\(628\) 1.75435e9 0.282655
\(629\) −1.14502e10 −1.83458
\(630\) 0 0
\(631\) −8.08881e9 −1.28169 −0.640843 0.767672i \(-0.721415\pi\)
−0.640843 + 0.767672i \(0.721415\pi\)
\(632\) −2.79221e8 −0.0439986
\(633\) 0 0
\(634\) 6.88765e8 0.107339
\(635\) 4.72007e9 0.731544
\(636\) 0 0
\(637\) 3.28669e8 0.0503815
\(638\) 1.52579e9 0.232607
\(639\) 0 0
\(640\) −1.87348e9 −0.282501
\(641\) 1.05667e10 1.58466 0.792329 0.610094i \(-0.208868\pi\)
0.792329 + 0.610094i \(0.208868\pi\)
\(642\) 0 0
\(643\) 9.32183e9 1.38281 0.691405 0.722467i \(-0.256992\pi\)
0.691405 + 0.722467i \(0.256992\pi\)
\(644\) −9.58542e8 −0.141420
\(645\) 0 0
\(646\) 2.51306e9 0.366765
\(647\) −2.14135e9 −0.310830 −0.155415 0.987849i \(-0.549671\pi\)
−0.155415 + 0.987849i \(0.549671\pi\)
\(648\) 0 0
\(649\) 3.70790e9 0.532440
\(650\) −3.03260e8 −0.0433130
\(651\) 0 0
\(652\) 2.11504e9 0.298849
\(653\) 3.10122e9 0.435850 0.217925 0.975966i \(-0.430071\pi\)
0.217925 + 0.975966i \(0.430071\pi\)
\(654\) 0 0
\(655\) 2.93784e9 0.408492
\(656\) 8.83207e6 0.00122152
\(657\) 0 0
\(658\) 2.27400e9 0.311171
\(659\) −7.00087e9 −0.952912 −0.476456 0.879198i \(-0.658079\pi\)
−0.476456 + 0.879198i \(0.658079\pi\)
\(660\) 0 0
\(661\) −1.17338e10 −1.58028 −0.790139 0.612928i \(-0.789991\pi\)
−0.790139 + 0.612928i \(0.789991\pi\)
\(662\) −3.54026e9 −0.474277
\(663\) 0 0
\(664\) 4.28775e9 0.568383
\(665\) 7.73959e8 0.102057
\(666\) 0 0
\(667\) −2.22959e9 −0.290927
\(668\) 7.56263e9 0.981647
\(669\) 0 0
\(670\) 3.33038e9 0.427791
\(671\) −2.48465e9 −0.317494
\(672\) 0 0
\(673\) −4.96419e9 −0.627763 −0.313882 0.949462i \(-0.601630\pi\)
−0.313882 + 0.949462i \(0.601630\pi\)
\(674\) −8.23956e9 −1.03656
\(675\) 0 0
\(676\) 4.38086e9 0.545439
\(677\) 5.29734e9 0.656142 0.328071 0.944653i \(-0.393602\pi\)
0.328071 + 0.944653i \(0.393602\pi\)
\(678\) 0 0
\(679\) −4.14327e8 −0.0507925
\(680\) 3.61497e9 0.440883
\(681\) 0 0
\(682\) 3.10386e9 0.374677
\(683\) −4.78049e9 −0.574116 −0.287058 0.957913i \(-0.592677\pi\)
−0.287058 + 0.957913i \(0.592677\pi\)
\(684\) 0 0
\(685\) 3.99186e9 0.474524
\(686\) 2.80354e8 0.0331568
\(687\) 0 0
\(688\) −1.19518e7 −0.00139918
\(689\) −4.13910e8 −0.0482101
\(690\) 0 0
\(691\) −2.35648e9 −0.271700 −0.135850 0.990729i \(-0.543377\pi\)
−0.135850 + 0.990729i \(0.543377\pi\)
\(692\) 3.99120e9 0.457859
\(693\) 0 0
\(694\) −4.88012e9 −0.554207
\(695\) 5.60897e9 0.633776
\(696\) 0 0
\(697\) −9.87521e8 −0.110467
\(698\) 3.79895e9 0.422833
\(699\) 0 0
\(700\) 4.27320e8 0.0470880
\(701\) 1.65547e10 1.81513 0.907567 0.419906i \(-0.137937\pi\)
0.907567 + 0.419906i \(0.137937\pi\)
\(702\) 0 0
\(703\) 1.03149e10 1.11975
\(704\) −4.38154e9 −0.473284
\(705\) 0 0
\(706\) −1.15764e9 −0.123810
\(707\) −3.64948e9 −0.388385
\(708\) 0 0
\(709\) −6.42948e9 −0.677507 −0.338754 0.940875i \(-0.610005\pi\)
−0.338754 + 0.940875i \(0.610005\pi\)
\(710\) −2.73608e9 −0.286896
\(711\) 0 0
\(712\) −1.53785e9 −0.159674
\(713\) −4.53557e9 −0.468618
\(714\) 0 0
\(715\) 1.20561e9 0.123349
\(716\) 4.12065e9 0.419537
\(717\) 0 0
\(718\) −4.24286e9 −0.427783
\(719\) 9.15944e9 0.919005 0.459502 0.888177i \(-0.348028\pi\)
0.459502 + 0.888177i \(0.348028\pi\)
\(720\) 0 0
\(721\) 1.16989e9 0.116244
\(722\) 3.94624e9 0.390215
\(723\) 0 0
\(724\) −9.68267e9 −0.948223
\(725\) 9.93955e8 0.0968687
\(726\) 0 0
\(727\) 1.73629e10 1.67591 0.837955 0.545739i \(-0.183751\pi\)
0.837955 + 0.545739i \(0.183751\pi\)
\(728\) −1.38291e9 −0.132842
\(729\) 0 0
\(730\) −3.54106e9 −0.336902
\(731\) 1.33633e9 0.126533
\(732\) 0 0
\(733\) −1.62448e10 −1.52353 −0.761765 0.647853i \(-0.775667\pi\)
−0.761765 + 0.647853i \(0.775667\pi\)
\(734\) 9.99110e9 0.932561
\(735\) 0 0
\(736\) 6.51832e9 0.602648
\(737\) −1.32399e10 −1.21828
\(738\) 0 0
\(739\) 1.32542e9 0.120808 0.0604041 0.998174i \(-0.480761\pi\)
0.0604041 + 0.998174i \(0.480761\pi\)
\(740\) 5.69506e9 0.516639
\(741\) 0 0
\(742\) −3.53064e8 −0.0317278
\(743\) −2.74796e9 −0.245782 −0.122891 0.992420i \(-0.539217\pi\)
−0.122891 + 0.992420i \(0.539217\pi\)
\(744\) 0 0
\(745\) −4.90605e9 −0.434696
\(746\) 2.09668e9 0.184904
\(747\) 0 0
\(748\) −5.51604e9 −0.481916
\(749\) −7.49888e9 −0.652094
\(750\) 0 0
\(751\) 1.33321e10 1.14857 0.574287 0.818654i \(-0.305279\pi\)
0.574287 + 0.818654i \(0.305279\pi\)
\(752\) 1.71022e8 0.0146652
\(753\) 0 0
\(754\) −1.23464e9 −0.104892
\(755\) −5.61834e9 −0.475109
\(756\) 0 0
\(757\) −1.92796e10 −1.61534 −0.807668 0.589637i \(-0.799271\pi\)
−0.807668 + 0.589637i \(0.799271\pi\)
\(758\) 5.48534e9 0.457468
\(759\) 0 0
\(760\) −3.25652e9 −0.269096
\(761\) 1.74311e10 1.43377 0.716883 0.697193i \(-0.245568\pi\)
0.716883 + 0.697193i \(0.245568\pi\)
\(762\) 0 0
\(763\) 4.11664e9 0.335511
\(764\) 1.00380e10 0.814367
\(765\) 0 0
\(766\) 1.39562e10 1.12193
\(767\) −3.00036e9 −0.240099
\(768\) 0 0
\(769\) −1.68123e10 −1.33317 −0.666585 0.745429i \(-0.732245\pi\)
−0.666585 + 0.745429i \(0.732245\pi\)
\(770\) 1.02838e9 0.0811775
\(771\) 0 0
\(772\) 8.10146e9 0.633728
\(773\) −1.92866e10 −1.50185 −0.750927 0.660385i \(-0.770393\pi\)
−0.750927 + 0.660385i \(0.770393\pi\)
\(774\) 0 0
\(775\) 2.02197e9 0.156034
\(776\) 1.74333e9 0.133926
\(777\) 0 0
\(778\) −1.00344e10 −0.763946
\(779\) 8.89603e8 0.0674241
\(780\) 0 0
\(781\) 1.08772e10 0.817033
\(782\) −4.87940e9 −0.364874
\(783\) 0 0
\(784\) 2.10847e7 0.00156265
\(785\) 2.75034e9 0.202929
\(786\) 0 0
\(787\) 1.04192e8 0.00761946 0.00380973 0.999993i \(-0.498787\pi\)
0.00380973 + 0.999993i \(0.498787\pi\)
\(788\) 1.31512e10 0.957467
\(789\) 0 0
\(790\) −1.68017e8 −0.0121243
\(791\) 4.63612e8 0.0333071
\(792\) 0 0
\(793\) 2.01053e9 0.143171
\(794\) −5.16073e9 −0.365880
\(795\) 0 0
\(796\) −3.40198e7 −0.00239076
\(797\) −6.82275e9 −0.477370 −0.238685 0.971097i \(-0.576716\pi\)
−0.238685 + 0.971097i \(0.576716\pi\)
\(798\) 0 0
\(799\) −1.91221e10 −1.32624
\(800\) −2.90588e9 −0.200661
\(801\) 0 0
\(802\) −1.11218e9 −0.0761313
\(803\) 1.40774e10 0.959443
\(804\) 0 0
\(805\) −1.50274e9 −0.101531
\(806\) −2.51159e9 −0.168957
\(807\) 0 0
\(808\) 1.53556e10 1.02406
\(809\) −1.93003e10 −1.28158 −0.640788 0.767718i \(-0.721392\pi\)
−0.640788 + 0.767718i \(0.721392\pi\)
\(810\) 0 0
\(811\) −2.17571e10 −1.43228 −0.716139 0.697957i \(-0.754092\pi\)
−0.716139 + 0.697957i \(0.754092\pi\)
\(812\) 1.73972e9 0.114034
\(813\) 0 0
\(814\) 1.37056e10 0.890662
\(815\) 3.31581e9 0.214555
\(816\) 0 0
\(817\) −1.20383e9 −0.0772304
\(818\) 1.15973e10 0.740836
\(819\) 0 0
\(820\) 4.91169e8 0.0311088
\(821\) 6.17840e9 0.389650 0.194825 0.980838i \(-0.437586\pi\)
0.194825 + 0.980838i \(0.437586\pi\)
\(822\) 0 0
\(823\) 3.12248e10 1.95254 0.976271 0.216553i \(-0.0694814\pi\)
0.976271 + 0.216553i \(0.0694814\pi\)
\(824\) −4.92244e9 −0.306503
\(825\) 0 0
\(826\) −2.55930e9 −0.158013
\(827\) −2.77162e10 −1.70398 −0.851991 0.523556i \(-0.824605\pi\)
−0.851991 + 0.523556i \(0.824605\pi\)
\(828\) 0 0
\(829\) −1.18348e8 −0.00721475 −0.00360737 0.999993i \(-0.501148\pi\)
−0.00360737 + 0.999993i \(0.501148\pi\)
\(830\) 2.58008e9 0.156625
\(831\) 0 0
\(832\) 3.54546e9 0.213423
\(833\) −2.35750e9 −0.141317
\(834\) 0 0
\(835\) 1.18562e10 0.704760
\(836\) 4.96909e9 0.294141
\(837\) 0 0
\(838\) −3.56654e9 −0.209360
\(839\) 2.11926e10 1.23885 0.619423 0.785057i \(-0.287367\pi\)
0.619423 + 0.785057i \(0.287367\pi\)
\(840\) 0 0
\(841\) −1.32033e10 −0.765411
\(842\) −1.35722e10 −0.783536
\(843\) 0 0
\(844\) 5.36456e9 0.307139
\(845\) 6.86801e9 0.391591
\(846\) 0 0
\(847\) 2.59580e9 0.146784
\(848\) −2.65531e7 −0.00149530
\(849\) 0 0
\(850\) 2.17525e9 0.121490
\(851\) −2.00276e10 −1.11397
\(852\) 0 0
\(853\) 3.35615e10 1.85148 0.925742 0.378156i \(-0.123442\pi\)
0.925742 + 0.378156i \(0.123442\pi\)
\(854\) 1.71498e9 0.0942229
\(855\) 0 0
\(856\) 3.15524e10 1.71939
\(857\) 5.34969e9 0.290333 0.145166 0.989407i \(-0.453628\pi\)
0.145166 + 0.989407i \(0.453628\pi\)
\(858\) 0 0
\(859\) 3.39623e10 1.82819 0.914093 0.405504i \(-0.132904\pi\)
0.914093 + 0.405504i \(0.132904\pi\)
\(860\) −6.64661e8 −0.0356333
\(861\) 0 0
\(862\) −1.06973e10 −0.568853
\(863\) 9.44338e9 0.500138 0.250069 0.968228i \(-0.419547\pi\)
0.250069 + 0.968228i \(0.419547\pi\)
\(864\) 0 0
\(865\) 6.25712e9 0.328714
\(866\) 1.20096e10 0.628370
\(867\) 0 0
\(868\) 3.53905e9 0.183683
\(869\) 6.67948e8 0.0345281
\(870\) 0 0
\(871\) 1.07135e10 0.549372
\(872\) −1.73212e10 −0.884649
\(873\) 0 0
\(874\) 4.39558e9 0.222703
\(875\) 6.69922e8 0.0338062
\(876\) 0 0
\(877\) 3.45584e10 1.73004 0.865018 0.501740i \(-0.167307\pi\)
0.865018 + 0.501740i \(0.167307\pi\)
\(878\) −1.94961e10 −0.972111
\(879\) 0 0
\(880\) 7.73418e7 0.00382583
\(881\) 3.78291e10 1.86385 0.931923 0.362656i \(-0.118130\pi\)
0.931923 + 0.362656i \(0.118130\pi\)
\(882\) 0 0
\(883\) −1.14776e9 −0.0561033 −0.0280517 0.999606i \(-0.508930\pi\)
−0.0280517 + 0.999606i \(0.508930\pi\)
\(884\) 4.46348e9 0.217316
\(885\) 0 0
\(886\) 4.67589e9 0.225864
\(887\) −1.07492e9 −0.0517181 −0.0258590 0.999666i \(-0.508232\pi\)
−0.0258590 + 0.999666i \(0.508232\pi\)
\(888\) 0 0
\(889\) 1.29519e10 0.618268
\(890\) −9.25374e8 −0.0439999
\(891\) 0 0
\(892\) −1.21974e10 −0.575427
\(893\) 1.72260e10 0.809478
\(894\) 0 0
\(895\) 6.46006e9 0.301201
\(896\) −5.14083e9 −0.238757
\(897\) 0 0
\(898\) 5.97351e9 0.275272
\(899\) 8.23191e9 0.377869
\(900\) 0 0
\(901\) 2.96892e9 0.135226
\(902\) 1.18204e9 0.0536301
\(903\) 0 0
\(904\) −1.95070e9 −0.0878216
\(905\) −1.51798e10 −0.680764
\(906\) 0 0
\(907\) −1.23252e10 −0.548489 −0.274245 0.961660i \(-0.588428\pi\)
−0.274245 + 0.961660i \(0.588428\pi\)
\(908\) 8.35413e9 0.370340
\(909\) 0 0
\(910\) −8.32146e8 −0.0366062
\(911\) −1.38378e10 −0.606389 −0.303194 0.952929i \(-0.598053\pi\)
−0.303194 + 0.952929i \(0.598053\pi\)
\(912\) 0 0
\(913\) −1.02571e10 −0.446042
\(914\) 1.28756e10 0.557769
\(915\) 0 0
\(916\) 1.43387e9 0.0616418
\(917\) 8.06143e9 0.345238
\(918\) 0 0
\(919\) −3.14447e10 −1.33642 −0.668210 0.743973i \(-0.732939\pi\)
−0.668210 + 0.743973i \(0.732939\pi\)
\(920\) 6.32293e9 0.267708
\(921\) 0 0
\(922\) −4.05792e9 −0.170508
\(923\) −8.80167e9 −0.368433
\(924\) 0 0
\(925\) 8.92832e9 0.370914
\(926\) 2.15720e10 0.892794
\(927\) 0 0
\(928\) −1.18305e10 −0.485944
\(929\) 9.95416e9 0.407333 0.203667 0.979040i \(-0.434714\pi\)
0.203667 + 0.979040i \(0.434714\pi\)
\(930\) 0 0
\(931\) 2.12374e9 0.0862538
\(932\) −1.35348e10 −0.547641
\(933\) 0 0
\(934\) −1.66472e10 −0.668541
\(935\) −8.64765e9 −0.345985
\(936\) 0 0
\(937\) 5.58944e9 0.221963 0.110981 0.993822i \(-0.464601\pi\)
0.110981 + 0.993822i \(0.464601\pi\)
\(938\) 9.13856e9 0.361550
\(939\) 0 0
\(940\) 9.51087e9 0.373485
\(941\) 6.34397e9 0.248198 0.124099 0.992270i \(-0.460396\pi\)
0.124099 + 0.992270i \(0.460396\pi\)
\(942\) 0 0
\(943\) −1.72727e9 −0.0670764
\(944\) −1.92479e8 −0.00744700
\(945\) 0 0
\(946\) −1.59956e9 −0.0614301
\(947\) −1.62315e10 −0.621060 −0.310530 0.950564i \(-0.600507\pi\)
−0.310530 + 0.950564i \(0.600507\pi\)
\(948\) 0 0
\(949\) −1.13912e10 −0.432652
\(950\) −1.95956e9 −0.0741525
\(951\) 0 0
\(952\) 9.91946e9 0.372614
\(953\) −7.68925e9 −0.287779 −0.143889 0.989594i \(-0.545961\pi\)
−0.143889 + 0.989594i \(0.545961\pi\)
\(954\) 0 0
\(955\) 1.57369e10 0.584664
\(956\) −6.67941e9 −0.247250
\(957\) 0 0
\(958\) 2.16130e7 0.000794211 0
\(959\) 1.09537e10 0.401046
\(960\) 0 0
\(961\) −1.07667e10 −0.391338
\(962\) −1.10903e10 −0.401636
\(963\) 0 0
\(964\) 1.04600e10 0.376065
\(965\) 1.27009e10 0.454976
\(966\) 0 0
\(967\) −1.92306e10 −0.683912 −0.341956 0.939716i \(-0.611089\pi\)
−0.341956 + 0.939716i \(0.611089\pi\)
\(968\) −1.09221e10 −0.387029
\(969\) 0 0
\(970\) 1.04902e9 0.0369048
\(971\) 3.66365e10 1.28424 0.642120 0.766604i \(-0.278055\pi\)
0.642120 + 0.766604i \(0.278055\pi\)
\(972\) 0 0
\(973\) 1.53910e10 0.535639
\(974\) 2.40267e10 0.833177
\(975\) 0 0
\(976\) 1.28980e8 0.00444065
\(977\) −2.73002e10 −0.936558 −0.468279 0.883581i \(-0.655126\pi\)
−0.468279 + 0.883581i \(0.655126\pi\)
\(978\) 0 0
\(979\) 3.67881e9 0.125305
\(980\) 1.17257e9 0.0397966
\(981\) 0 0
\(982\) 1.30599e10 0.440099
\(983\) 6.21169e7 0.00208580 0.00104290 0.999999i \(-0.499668\pi\)
0.00104290 + 0.999999i \(0.499668\pi\)
\(984\) 0 0
\(985\) 2.06175e10 0.687401
\(986\) 8.85594e9 0.294216
\(987\) 0 0
\(988\) −4.02090e9 −0.132640
\(989\) 2.33738e9 0.0768321
\(990\) 0 0
\(991\) −1.82777e10 −0.596573 −0.298287 0.954476i \(-0.596415\pi\)
−0.298287 + 0.954476i \(0.596415\pi\)
\(992\) −2.40664e10 −0.782746
\(993\) 0 0
\(994\) −7.50780e9 −0.242471
\(995\) −5.33338e7 −0.00171641
\(996\) 0 0
\(997\) −3.93538e10 −1.25763 −0.628817 0.777553i \(-0.716460\pi\)
−0.628817 + 0.777553i \(0.716460\pi\)
\(998\) 2.07480e10 0.660722
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.i.1.2 4
3.2 odd 2 105.8.a.f.1.3 4
15.14 odd 2 525.8.a.k.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.f.1.3 4 3.2 odd 2
315.8.a.i.1.2 4 1.1 even 1 trivial
525.8.a.k.1.2 4 15.14 odd 2