Properties

Label 315.8.a.g.1.4
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(8.50252\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.9037 q^{2} +65.3140 q^{4} -125.000 q^{5} +343.000 q^{7} -871.570 q^{8} -1737.97 q^{10} -2958.70 q^{11} +2184.94 q^{13} +4768.98 q^{14} -20478.3 q^{16} -1861.36 q^{17} +5038.34 q^{19} -8164.25 q^{20} -41137.0 q^{22} +73411.5 q^{23} +15625.0 q^{25} +30378.9 q^{26} +22402.7 q^{28} +52747.6 q^{29} -533.745 q^{31} -173164. q^{32} -25879.8 q^{34} -42875.0 q^{35} +136474. q^{37} +70051.8 q^{38} +108946. q^{40} +452012. q^{41} +730329. q^{43} -193244. q^{44} +1.02069e6 q^{46} -580714. q^{47} +117649. q^{49} +217246. q^{50} +142707. q^{52} -824779. q^{53} +369837. q^{55} -298949. q^{56} +733389. q^{58} -324469. q^{59} +1.11728e6 q^{61} -7421.05 q^{62} +213598. q^{64} -273118. q^{65} +2.52040e6 q^{67} -121573. q^{68} -596123. q^{70} +3.84285e6 q^{71} +2.16857e6 q^{73} +1.89750e6 q^{74} +329074. q^{76} -1.01483e6 q^{77} -1.05542e6 q^{79} +2.55978e6 q^{80} +6.28465e6 q^{82} -2.53493e6 q^{83} +232669. q^{85} +1.01543e7 q^{86} +2.57871e6 q^{88} +6.17151e6 q^{89} +749435. q^{91} +4.79479e6 q^{92} -8.07410e6 q^{94} -629793. q^{95} +5.36213e6 q^{97} +1.63576e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 11 q^{2} + 141 q^{4} - 500 q^{5} + 1372 q^{7} - 2133 q^{8} + 1375 q^{10} + 2708 q^{11} - 2212 q^{13} - 3773 q^{14} - 9599 q^{16} + 17016 q^{17} + 32668 q^{19} - 17625 q^{20} - 7196 q^{22} - 87696 q^{23}+ \cdots - 1294139 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 13.9037 1.22893 0.614464 0.788945i \(-0.289372\pi\)
0.614464 + 0.788945i \(0.289372\pi\)
\(3\) 0 0
\(4\) 65.3140 0.510265
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) −871.570 −0.601849
\(9\) 0 0
\(10\) −1737.97 −0.549594
\(11\) −2958.70 −0.670234 −0.335117 0.942177i \(-0.608776\pi\)
−0.335117 + 0.942177i \(0.608776\pi\)
\(12\) 0 0
\(13\) 2184.94 0.275828 0.137914 0.990444i \(-0.455960\pi\)
0.137914 + 0.990444i \(0.455960\pi\)
\(14\) 4768.98 0.464491
\(15\) 0 0
\(16\) −20478.3 −1.24989
\(17\) −1861.36 −0.0918879 −0.0459439 0.998944i \(-0.514630\pi\)
−0.0459439 + 0.998944i \(0.514630\pi\)
\(18\) 0 0
\(19\) 5038.34 0.168519 0.0842597 0.996444i \(-0.473147\pi\)
0.0842597 + 0.996444i \(0.473147\pi\)
\(20\) −8164.25 −0.228198
\(21\) 0 0
\(22\) −41137.0 −0.823670
\(23\) 73411.5 1.25810 0.629052 0.777363i \(-0.283443\pi\)
0.629052 + 0.777363i \(0.283443\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 30378.9 0.338973
\(27\) 0 0
\(28\) 22402.7 0.192862
\(29\) 52747.6 0.401615 0.200807 0.979631i \(-0.435643\pi\)
0.200807 + 0.979631i \(0.435643\pi\)
\(30\) 0 0
\(31\) −533.745 −0.00321786 −0.00160893 0.999999i \(-0.500512\pi\)
−0.00160893 + 0.999999i \(0.500512\pi\)
\(32\) −173164. −0.934182
\(33\) 0 0
\(34\) −25879.8 −0.112924
\(35\) −42875.0 −0.169031
\(36\) 0 0
\(37\) 136474. 0.442938 0.221469 0.975167i \(-0.428915\pi\)
0.221469 + 0.975167i \(0.428915\pi\)
\(38\) 70051.8 0.207098
\(39\) 0 0
\(40\) 108946. 0.269155
\(41\) 452012. 1.02425 0.512125 0.858911i \(-0.328858\pi\)
0.512125 + 0.858911i \(0.328858\pi\)
\(42\) 0 0
\(43\) 730329. 1.40081 0.700405 0.713746i \(-0.253003\pi\)
0.700405 + 0.713746i \(0.253003\pi\)
\(44\) −193244. −0.341997
\(45\) 0 0
\(46\) 1.02069e6 1.54612
\(47\) −580714. −0.815868 −0.407934 0.913011i \(-0.633751\pi\)
−0.407934 + 0.913011i \(0.633751\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 217246. 0.245786
\(51\) 0 0
\(52\) 142707. 0.140745
\(53\) −824779. −0.760978 −0.380489 0.924785i \(-0.624244\pi\)
−0.380489 + 0.924785i \(0.624244\pi\)
\(54\) 0 0
\(55\) 369837. 0.299738
\(56\) −298949. −0.227477
\(57\) 0 0
\(58\) 733389. 0.493556
\(59\) −324469. −0.205679 −0.102840 0.994698i \(-0.532793\pi\)
−0.102840 + 0.994698i \(0.532793\pi\)
\(60\) 0 0
\(61\) 1.11728e6 0.630242 0.315121 0.949051i \(-0.397955\pi\)
0.315121 + 0.949051i \(0.397955\pi\)
\(62\) −7421.05 −0.00395453
\(63\) 0 0
\(64\) 213598. 0.101851
\(65\) −273118. −0.123354
\(66\) 0 0
\(67\) 2.52040e6 1.02378 0.511891 0.859050i \(-0.328945\pi\)
0.511891 + 0.859050i \(0.328945\pi\)
\(68\) −121573. −0.0468872
\(69\) 0 0
\(70\) −596123. −0.207727
\(71\) 3.84285e6 1.27423 0.637117 0.770767i \(-0.280127\pi\)
0.637117 + 0.770767i \(0.280127\pi\)
\(72\) 0 0
\(73\) 2.16857e6 0.652446 0.326223 0.945293i \(-0.394224\pi\)
0.326223 + 0.945293i \(0.394224\pi\)
\(74\) 1.89750e6 0.544340
\(75\) 0 0
\(76\) 329074. 0.0859896
\(77\) −1.01483e6 −0.253325
\(78\) 0 0
\(79\) −1.05542e6 −0.240840 −0.120420 0.992723i \(-0.538424\pi\)
−0.120420 + 0.992723i \(0.538424\pi\)
\(80\) 2.55978e6 0.558970
\(81\) 0 0
\(82\) 6.28465e6 1.25873
\(83\) −2.53493e6 −0.486623 −0.243312 0.969948i \(-0.578234\pi\)
−0.243312 + 0.969948i \(0.578234\pi\)
\(84\) 0 0
\(85\) 232669. 0.0410935
\(86\) 1.01543e7 1.72149
\(87\) 0 0
\(88\) 2.57871e6 0.403380
\(89\) 6.17151e6 0.927954 0.463977 0.885847i \(-0.346422\pi\)
0.463977 + 0.885847i \(0.346422\pi\)
\(90\) 0 0
\(91\) 749435. 0.104253
\(92\) 4.79479e6 0.641967
\(93\) 0 0
\(94\) −8.07410e6 −1.00264
\(95\) −629793. −0.0753642
\(96\) 0 0
\(97\) 5.36213e6 0.596535 0.298268 0.954482i \(-0.403591\pi\)
0.298268 + 0.954482i \(0.403591\pi\)
\(98\) 1.63576e6 0.175561
\(99\) 0 0
\(100\) 1.02053e6 0.102053
\(101\) 6.68767e6 0.645877 0.322939 0.946420i \(-0.395329\pi\)
0.322939 + 0.946420i \(0.395329\pi\)
\(102\) 0 0
\(103\) 493600. 0.0445087 0.0222543 0.999752i \(-0.492916\pi\)
0.0222543 + 0.999752i \(0.492916\pi\)
\(104\) −1.90433e6 −0.166007
\(105\) 0 0
\(106\) −1.14675e7 −0.935188
\(107\) 8.53994e6 0.673925 0.336963 0.941518i \(-0.390600\pi\)
0.336963 + 0.941518i \(0.390600\pi\)
\(108\) 0 0
\(109\) 9.37440e6 0.693348 0.346674 0.937986i \(-0.387311\pi\)
0.346674 + 0.937986i \(0.387311\pi\)
\(110\) 5.14212e6 0.368356
\(111\) 0 0
\(112\) −7.02405e6 −0.472416
\(113\) 2.90770e6 0.189572 0.0947862 0.995498i \(-0.469783\pi\)
0.0947862 + 0.995498i \(0.469783\pi\)
\(114\) 0 0
\(115\) −9.17643e6 −0.562641
\(116\) 3.44515e6 0.204930
\(117\) 0 0
\(118\) −4.51133e6 −0.252765
\(119\) −638445. −0.0347303
\(120\) 0 0
\(121\) −1.07333e7 −0.550787
\(122\) 1.55344e7 0.774523
\(123\) 0 0
\(124\) −34861.0 −0.00164196
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) 3.09234e7 1.33960 0.669798 0.742543i \(-0.266381\pi\)
0.669798 + 0.742543i \(0.266381\pi\)
\(128\) 2.51347e7 1.05935
\(129\) 0 0
\(130\) −3.79736e6 −0.151593
\(131\) 1.31403e6 0.0510690 0.0255345 0.999674i \(-0.491871\pi\)
0.0255345 + 0.999674i \(0.491871\pi\)
\(132\) 0 0
\(133\) 1.72815e6 0.0636943
\(134\) 3.50430e7 1.25816
\(135\) 0 0
\(136\) 1.62230e6 0.0553026
\(137\) −5.31860e7 −1.76716 −0.883579 0.468282i \(-0.844873\pi\)
−0.883579 + 0.468282i \(0.844873\pi\)
\(138\) 0 0
\(139\) 5.10228e7 1.61143 0.805717 0.592301i \(-0.201780\pi\)
0.805717 + 0.592301i \(0.201780\pi\)
\(140\) −2.80034e6 −0.0862506
\(141\) 0 0
\(142\) 5.34300e7 1.56594
\(143\) −6.46458e6 −0.184869
\(144\) 0 0
\(145\) −6.59345e6 −0.179608
\(146\) 3.01513e7 0.801809
\(147\) 0 0
\(148\) 8.91364e6 0.226016
\(149\) −6.25124e7 −1.54815 −0.774077 0.633091i \(-0.781786\pi\)
−0.774077 + 0.633091i \(0.781786\pi\)
\(150\) 0 0
\(151\) 3.77217e7 0.891603 0.445801 0.895132i \(-0.352919\pi\)
0.445801 + 0.895132i \(0.352919\pi\)
\(152\) −4.39127e6 −0.101423
\(153\) 0 0
\(154\) −1.41100e7 −0.311318
\(155\) 66718.1 0.00143907
\(156\) 0 0
\(157\) 9.00303e7 1.85669 0.928347 0.371716i \(-0.121230\pi\)
0.928347 + 0.371716i \(0.121230\pi\)
\(158\) −1.46742e7 −0.295975
\(159\) 0 0
\(160\) 2.16454e7 0.417779
\(161\) 2.51801e7 0.475519
\(162\) 0 0
\(163\) −6.11773e7 −1.10645 −0.553227 0.833030i \(-0.686604\pi\)
−0.553227 + 0.833030i \(0.686604\pi\)
\(164\) 2.95227e7 0.522639
\(165\) 0 0
\(166\) −3.52450e7 −0.598025
\(167\) −1.16060e8 −1.92830 −0.964149 0.265360i \(-0.914509\pi\)
−0.964149 + 0.265360i \(0.914509\pi\)
\(168\) 0 0
\(169\) −5.79745e7 −0.923919
\(170\) 3.23498e6 0.0505010
\(171\) 0 0
\(172\) 4.77007e7 0.714785
\(173\) 4.58752e7 0.673622 0.336811 0.941572i \(-0.390652\pi\)
0.336811 + 0.941572i \(0.390652\pi\)
\(174\) 0 0
\(175\) 5.35938e6 0.0755929
\(176\) 6.05890e7 0.837722
\(177\) 0 0
\(178\) 8.58071e7 1.14039
\(179\) −9.29665e7 −1.21155 −0.605774 0.795636i \(-0.707137\pi\)
−0.605774 + 0.795636i \(0.707137\pi\)
\(180\) 0 0
\(181\) 1.86276e7 0.233498 0.116749 0.993161i \(-0.462753\pi\)
0.116749 + 0.993161i \(0.462753\pi\)
\(182\) 1.04199e7 0.128120
\(183\) 0 0
\(184\) −6.39833e7 −0.757188
\(185\) −1.70592e7 −0.198088
\(186\) 0 0
\(187\) 5.50719e6 0.0615864
\(188\) −3.79288e7 −0.416309
\(189\) 0 0
\(190\) −8.75647e6 −0.0926172
\(191\) 2.44240e7 0.253630 0.126815 0.991926i \(-0.459525\pi\)
0.126815 + 0.991926i \(0.459525\pi\)
\(192\) 0 0
\(193\) −1.13841e7 −0.113985 −0.0569923 0.998375i \(-0.518151\pi\)
−0.0569923 + 0.998375i \(0.518151\pi\)
\(194\) 7.45536e7 0.733099
\(195\) 0 0
\(196\) 7.68412e6 0.0728951
\(197\) −1.26299e7 −0.117698 −0.0588488 0.998267i \(-0.518743\pi\)
−0.0588488 + 0.998267i \(0.518743\pi\)
\(198\) 0 0
\(199\) 1.01401e8 0.912129 0.456064 0.889947i \(-0.349259\pi\)
0.456064 + 0.889947i \(0.349259\pi\)
\(200\) −1.36183e7 −0.120370
\(201\) 0 0
\(202\) 9.29836e7 0.793737
\(203\) 1.80924e7 0.151796
\(204\) 0 0
\(205\) −5.65015e7 −0.458059
\(206\) 6.86288e6 0.0546980
\(207\) 0 0
\(208\) −4.47438e7 −0.344756
\(209\) −1.49069e7 −0.112947
\(210\) 0 0
\(211\) −2.41298e7 −0.176834 −0.0884170 0.996084i \(-0.528181\pi\)
−0.0884170 + 0.996084i \(0.528181\pi\)
\(212\) −5.38696e7 −0.388301
\(213\) 0 0
\(214\) 1.18737e8 0.828206
\(215\) −9.12912e7 −0.626461
\(216\) 0 0
\(217\) −183074. −0.00121624
\(218\) 1.30339e8 0.852075
\(219\) 0 0
\(220\) 2.41555e7 0.152946
\(221\) −4.06695e6 −0.0253452
\(222\) 0 0
\(223\) −2.32800e7 −0.140578 −0.0702889 0.997527i \(-0.522392\pi\)
−0.0702889 + 0.997527i \(0.522392\pi\)
\(224\) −5.93951e7 −0.353088
\(225\) 0 0
\(226\) 4.04279e7 0.232971
\(227\) −1.61931e8 −0.918841 −0.459420 0.888219i \(-0.651943\pi\)
−0.459420 + 0.888219i \(0.651943\pi\)
\(228\) 0 0
\(229\) −9.71497e7 −0.534586 −0.267293 0.963615i \(-0.586129\pi\)
−0.267293 + 0.963615i \(0.586129\pi\)
\(230\) −1.27587e8 −0.691446
\(231\) 0 0
\(232\) −4.59732e7 −0.241711
\(233\) −6.18305e7 −0.320226 −0.160113 0.987099i \(-0.551186\pi\)
−0.160113 + 0.987099i \(0.551186\pi\)
\(234\) 0 0
\(235\) 7.25893e7 0.364867
\(236\) −2.11923e7 −0.104951
\(237\) 0 0
\(238\) −8.87677e6 −0.0426811
\(239\) −1.09923e8 −0.520831 −0.260415 0.965497i \(-0.583859\pi\)
−0.260415 + 0.965497i \(0.583859\pi\)
\(240\) 0 0
\(241\) 2.03146e8 0.934865 0.467433 0.884029i \(-0.345179\pi\)
0.467433 + 0.884029i \(0.345179\pi\)
\(242\) −1.49233e8 −0.676877
\(243\) 0 0
\(244\) 7.29740e7 0.321591
\(245\) −1.47061e7 −0.0638877
\(246\) 0 0
\(247\) 1.10085e7 0.0464823
\(248\) 465196. 0.00193667
\(249\) 0 0
\(250\) −2.71557e7 −0.109919
\(251\) −8.87979e7 −0.354442 −0.177221 0.984171i \(-0.556711\pi\)
−0.177221 + 0.984171i \(0.556711\pi\)
\(252\) 0 0
\(253\) −2.17202e8 −0.843224
\(254\) 4.29950e8 1.64627
\(255\) 0 0
\(256\) 3.22126e8 1.20001
\(257\) 4.87641e8 1.79198 0.895991 0.444071i \(-0.146466\pi\)
0.895991 + 0.444071i \(0.146466\pi\)
\(258\) 0 0
\(259\) 4.68105e7 0.167415
\(260\) −1.78384e7 −0.0629432
\(261\) 0 0
\(262\) 1.82700e7 0.0627601
\(263\) 1.12181e8 0.380254 0.190127 0.981760i \(-0.439110\pi\)
0.190127 + 0.981760i \(0.439110\pi\)
\(264\) 0 0
\(265\) 1.03097e8 0.340320
\(266\) 2.40278e7 0.0782758
\(267\) 0 0
\(268\) 1.64617e8 0.522401
\(269\) 4.95137e8 1.55093 0.775466 0.631389i \(-0.217515\pi\)
0.775466 + 0.631389i \(0.217515\pi\)
\(270\) 0 0
\(271\) 6.97464e7 0.212877 0.106439 0.994319i \(-0.466055\pi\)
0.106439 + 0.994319i \(0.466055\pi\)
\(272\) 3.81173e7 0.114850
\(273\) 0 0
\(274\) −7.39484e8 −2.17171
\(275\) −4.62297e7 −0.134047
\(276\) 0 0
\(277\) 2.29654e8 0.649225 0.324612 0.945847i \(-0.394766\pi\)
0.324612 + 0.945847i \(0.394766\pi\)
\(278\) 7.09408e8 1.98034
\(279\) 0 0
\(280\) 3.73686e7 0.101731
\(281\) 8.26555e7 0.222228 0.111114 0.993808i \(-0.464558\pi\)
0.111114 + 0.993808i \(0.464558\pi\)
\(282\) 0 0
\(283\) −1.35905e7 −0.0356437 −0.0178219 0.999841i \(-0.505673\pi\)
−0.0178219 + 0.999841i \(0.505673\pi\)
\(284\) 2.50992e8 0.650198
\(285\) 0 0
\(286\) −8.98819e7 −0.227191
\(287\) 1.55040e8 0.387130
\(288\) 0 0
\(289\) −4.06874e8 −0.991557
\(290\) −9.16736e7 −0.220725
\(291\) 0 0
\(292\) 1.41638e8 0.332920
\(293\) −1.02087e8 −0.237101 −0.118551 0.992948i \(-0.537825\pi\)
−0.118551 + 0.992948i \(0.537825\pi\)
\(294\) 0 0
\(295\) 4.05586e7 0.0919826
\(296\) −1.18947e8 −0.266582
\(297\) 0 0
\(298\) −8.69156e8 −1.90257
\(299\) 1.60400e8 0.347020
\(300\) 0 0
\(301\) 2.50503e8 0.529456
\(302\) 5.24472e8 1.09572
\(303\) 0 0
\(304\) −1.03177e8 −0.210631
\(305\) −1.39660e8 −0.281853
\(306\) 0 0
\(307\) −3.74499e8 −0.738696 −0.369348 0.929291i \(-0.620419\pi\)
−0.369348 + 0.929291i \(0.620419\pi\)
\(308\) −6.62828e7 −0.129263
\(309\) 0 0
\(310\) 927631. 0.00176852
\(311\) 2.97703e8 0.561205 0.280603 0.959824i \(-0.409466\pi\)
0.280603 + 0.959824i \(0.409466\pi\)
\(312\) 0 0
\(313\) −6.51149e8 −1.20026 −0.600130 0.799903i \(-0.704884\pi\)
−0.600130 + 0.799903i \(0.704884\pi\)
\(314\) 1.25176e9 2.28174
\(315\) 0 0
\(316\) −6.89334e7 −0.122892
\(317\) −5.04553e8 −0.889610 −0.444805 0.895627i \(-0.646727\pi\)
−0.444805 + 0.895627i \(0.646727\pi\)
\(318\) 0 0
\(319\) −1.56064e8 −0.269176
\(320\) −2.66997e7 −0.0455493
\(321\) 0 0
\(322\) 3.50098e8 0.584378
\(323\) −9.37814e6 −0.0154849
\(324\) 0 0
\(325\) 3.41397e7 0.0551656
\(326\) −8.50593e8 −1.35975
\(327\) 0 0
\(328\) −3.93960e8 −0.616444
\(329\) −1.99185e8 −0.308369
\(330\) 0 0
\(331\) 8.69824e8 1.31836 0.659179 0.751986i \(-0.270904\pi\)
0.659179 + 0.751986i \(0.270904\pi\)
\(332\) −1.65566e8 −0.248307
\(333\) 0 0
\(334\) −1.61367e9 −2.36974
\(335\) −3.15050e8 −0.457850
\(336\) 0 0
\(337\) 1.22083e9 1.73760 0.868802 0.495159i \(-0.164890\pi\)
0.868802 + 0.495159i \(0.164890\pi\)
\(338\) −8.06063e8 −1.13543
\(339\) 0 0
\(340\) 1.51966e7 0.0209686
\(341\) 1.57919e6 0.00215672
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) −6.36533e8 −0.843076
\(345\) 0 0
\(346\) 6.37837e8 0.827834
\(347\) −1.06220e9 −1.36474 −0.682372 0.731005i \(-0.739052\pi\)
−0.682372 + 0.731005i \(0.739052\pi\)
\(348\) 0 0
\(349\) 2.69763e8 0.339698 0.169849 0.985470i \(-0.445672\pi\)
0.169849 + 0.985470i \(0.445672\pi\)
\(350\) 7.45154e7 0.0928983
\(351\) 0 0
\(352\) 5.12339e8 0.626121
\(353\) −4.95774e8 −0.599891 −0.299946 0.953956i \(-0.596969\pi\)
−0.299946 + 0.953956i \(0.596969\pi\)
\(354\) 0 0
\(355\) −4.80356e8 −0.569855
\(356\) 4.03086e8 0.473503
\(357\) 0 0
\(358\) −1.29258e9 −1.48891
\(359\) −6.53192e8 −0.745093 −0.372546 0.928014i \(-0.621515\pi\)
−0.372546 + 0.928014i \(0.621515\pi\)
\(360\) 0 0
\(361\) −8.68487e8 −0.971601
\(362\) 2.58994e8 0.286952
\(363\) 0 0
\(364\) 4.89486e7 0.0531967
\(365\) −2.71072e8 −0.291783
\(366\) 0 0
\(367\) −7.53440e7 −0.0795641 −0.0397821 0.999208i \(-0.512666\pi\)
−0.0397821 + 0.999208i \(0.512666\pi\)
\(368\) −1.50334e9 −1.57250
\(369\) 0 0
\(370\) −2.37187e8 −0.243436
\(371\) −2.82899e8 −0.287623
\(372\) 0 0
\(373\) −1.34806e9 −1.34502 −0.672508 0.740090i \(-0.734783\pi\)
−0.672508 + 0.740090i \(0.734783\pi\)
\(374\) 7.65705e7 0.0756852
\(375\) 0 0
\(376\) 5.06133e8 0.491029
\(377\) 1.15250e8 0.110776
\(378\) 0 0
\(379\) 1.55120e9 1.46363 0.731814 0.681505i \(-0.238674\pi\)
0.731814 + 0.681505i \(0.238674\pi\)
\(380\) −4.11342e7 −0.0384557
\(381\) 0 0
\(382\) 3.39585e8 0.311693
\(383\) −1.65628e9 −1.50639 −0.753194 0.657798i \(-0.771488\pi\)
−0.753194 + 0.657798i \(0.771488\pi\)
\(384\) 0 0
\(385\) 1.26854e8 0.113290
\(386\) −1.58281e8 −0.140079
\(387\) 0 0
\(388\) 3.50222e8 0.304391
\(389\) −1.72150e9 −1.48280 −0.741399 0.671064i \(-0.765838\pi\)
−0.741399 + 0.671064i \(0.765838\pi\)
\(390\) 0 0
\(391\) −1.36645e8 −0.115604
\(392\) −1.02539e8 −0.0859784
\(393\) 0 0
\(394\) −1.75603e8 −0.144642
\(395\) 1.31927e8 0.107707
\(396\) 0 0
\(397\) −7.19442e8 −0.577071 −0.288536 0.957469i \(-0.593168\pi\)
−0.288536 + 0.957469i \(0.593168\pi\)
\(398\) 1.40985e9 1.12094
\(399\) 0 0
\(400\) −3.19973e8 −0.249979
\(401\) −1.80953e9 −1.40139 −0.700697 0.713459i \(-0.747128\pi\)
−0.700697 + 0.713459i \(0.747128\pi\)
\(402\) 0 0
\(403\) −1.16620e6 −0.000887576 0
\(404\) 4.36798e8 0.329569
\(405\) 0 0
\(406\) 2.51552e8 0.186547
\(407\) −4.03785e8 −0.296872
\(408\) 0 0
\(409\) −2.23865e8 −0.161791 −0.0808955 0.996723i \(-0.525778\pi\)
−0.0808955 + 0.996723i \(0.525778\pi\)
\(410\) −7.85581e8 −0.562921
\(411\) 0 0
\(412\) 3.22389e7 0.0227112
\(413\) −1.11293e8 −0.0777395
\(414\) 0 0
\(415\) 3.16866e8 0.217624
\(416\) −3.78352e8 −0.257673
\(417\) 0 0
\(418\) −2.07262e8 −0.138804
\(419\) 2.13566e9 1.41835 0.709175 0.705032i \(-0.249067\pi\)
0.709175 + 0.705032i \(0.249067\pi\)
\(420\) 0 0
\(421\) −1.69012e9 −1.10390 −0.551951 0.833877i \(-0.686116\pi\)
−0.551951 + 0.833877i \(0.686116\pi\)
\(422\) −3.35495e8 −0.217316
\(423\) 0 0
\(424\) 7.18853e8 0.457994
\(425\) −2.90837e7 −0.0183776
\(426\) 0 0
\(427\) 3.83227e8 0.238209
\(428\) 5.57777e8 0.343881
\(429\) 0 0
\(430\) −1.26929e9 −0.769876
\(431\) 7.17422e8 0.431623 0.215811 0.976435i \(-0.430760\pi\)
0.215811 + 0.976435i \(0.430760\pi\)
\(432\) 0 0
\(433\) −2.65820e9 −1.57355 −0.786773 0.617242i \(-0.788250\pi\)
−0.786773 + 0.617242i \(0.788250\pi\)
\(434\) −2.54542e6 −0.00149467
\(435\) 0 0
\(436\) 6.12280e8 0.353791
\(437\) 3.69872e8 0.212015
\(438\) 0 0
\(439\) 1.39177e9 0.785129 0.392565 0.919724i \(-0.371588\pi\)
0.392565 + 0.919724i \(0.371588\pi\)
\(440\) −3.22339e8 −0.180397
\(441\) 0 0
\(442\) −5.65458e7 −0.0311475
\(443\) −5.19996e8 −0.284176 −0.142088 0.989854i \(-0.545382\pi\)
−0.142088 + 0.989854i \(0.545382\pi\)
\(444\) 0 0
\(445\) −7.71439e8 −0.414994
\(446\) −3.23680e8 −0.172760
\(447\) 0 0
\(448\) 7.32640e7 0.0384962
\(449\) 9.46400e8 0.493415 0.246708 0.969090i \(-0.420651\pi\)
0.246708 + 0.969090i \(0.420651\pi\)
\(450\) 0 0
\(451\) −1.33737e9 −0.686487
\(452\) 1.89914e8 0.0967323
\(453\) 0 0
\(454\) −2.25145e9 −1.12919
\(455\) −9.36794e7 −0.0466234
\(456\) 0 0
\(457\) 2.55740e9 1.25341 0.626703 0.779259i \(-0.284404\pi\)
0.626703 + 0.779259i \(0.284404\pi\)
\(458\) −1.35074e9 −0.656968
\(459\) 0 0
\(460\) −5.99349e8 −0.287096
\(461\) 3.65768e9 1.73881 0.869405 0.494101i \(-0.164503\pi\)
0.869405 + 0.494101i \(0.164503\pi\)
\(462\) 0 0
\(463\) −1.54707e9 −0.724398 −0.362199 0.932101i \(-0.617974\pi\)
−0.362199 + 0.932101i \(0.617974\pi\)
\(464\) −1.08018e9 −0.501976
\(465\) 0 0
\(466\) −8.59675e8 −0.393535
\(467\) 2.07885e9 0.944524 0.472262 0.881458i \(-0.343438\pi\)
0.472262 + 0.881458i \(0.343438\pi\)
\(468\) 0 0
\(469\) 8.64497e8 0.386953
\(470\) 1.00926e9 0.448396
\(471\) 0 0
\(472\) 2.82797e8 0.123788
\(473\) −2.16082e9 −0.938870
\(474\) 0 0
\(475\) 7.87241e7 0.0337039
\(476\) −4.16994e7 −0.0177217
\(477\) 0 0
\(478\) −1.52834e9 −0.640064
\(479\) 6.28097e7 0.0261128 0.0130564 0.999915i \(-0.495844\pi\)
0.0130564 + 0.999915i \(0.495844\pi\)
\(480\) 0 0
\(481\) 2.98187e8 0.122175
\(482\) 2.82449e9 1.14888
\(483\) 0 0
\(484\) −7.01033e8 −0.281047
\(485\) −6.70266e8 −0.266779
\(486\) 0 0
\(487\) −5.65337e8 −0.221797 −0.110899 0.993832i \(-0.535373\pi\)
−0.110899 + 0.993832i \(0.535373\pi\)
\(488\) −9.73788e8 −0.379311
\(489\) 0 0
\(490\) −2.04470e8 −0.0785134
\(491\) 4.05243e9 1.54501 0.772504 0.635010i \(-0.219004\pi\)
0.772504 + 0.635010i \(0.219004\pi\)
\(492\) 0 0
\(493\) −9.81820e7 −0.0369035
\(494\) 1.53059e8 0.0571235
\(495\) 0 0
\(496\) 1.09302e7 0.00402199
\(497\) 1.31810e9 0.481615
\(498\) 0 0
\(499\) 3.62634e9 1.30652 0.653260 0.757133i \(-0.273401\pi\)
0.653260 + 0.757133i \(0.273401\pi\)
\(500\) −1.27566e8 −0.0456395
\(501\) 0 0
\(502\) −1.23462e9 −0.435584
\(503\) 2.17925e8 0.0763517 0.0381759 0.999271i \(-0.487845\pi\)
0.0381759 + 0.999271i \(0.487845\pi\)
\(504\) 0 0
\(505\) −8.35959e8 −0.288845
\(506\) −3.01993e9 −1.03626
\(507\) 0 0
\(508\) 2.01973e9 0.683549
\(509\) −1.12646e9 −0.378622 −0.189311 0.981917i \(-0.560625\pi\)
−0.189311 + 0.981917i \(0.560625\pi\)
\(510\) 0 0
\(511\) 7.43821e8 0.246601
\(512\) 1.26151e9 0.415382
\(513\) 0 0
\(514\) 6.78003e9 2.20222
\(515\) −6.16999e7 −0.0199049
\(516\) 0 0
\(517\) 1.71816e9 0.546823
\(518\) 6.50841e8 0.205741
\(519\) 0 0
\(520\) 2.38041e8 0.0742404
\(521\) 3.45164e9 1.06928 0.534642 0.845079i \(-0.320446\pi\)
0.534642 + 0.845079i \(0.320446\pi\)
\(522\) 0 0
\(523\) −2.96843e9 −0.907343 −0.453672 0.891169i \(-0.649886\pi\)
−0.453672 + 0.891169i \(0.649886\pi\)
\(524\) 8.58248e7 0.0260587
\(525\) 0 0
\(526\) 1.55973e9 0.467305
\(527\) 993489. 0.000295683 0
\(528\) 0 0
\(529\) 1.98442e9 0.582826
\(530\) 1.43344e9 0.418229
\(531\) 0 0
\(532\) 1.12872e8 0.0325010
\(533\) 9.87619e8 0.282517
\(534\) 0 0
\(535\) −1.06749e9 −0.301388
\(536\) −2.19671e9 −0.616162
\(537\) 0 0
\(538\) 6.88426e9 1.90598
\(539\) −3.48088e8 −0.0957477
\(540\) 0 0
\(541\) −3.14949e8 −0.0855164 −0.0427582 0.999085i \(-0.513615\pi\)
−0.0427582 + 0.999085i \(0.513615\pi\)
\(542\) 9.69736e8 0.261611
\(543\) 0 0
\(544\) 3.22319e8 0.0858400
\(545\) −1.17180e9 −0.310074
\(546\) 0 0
\(547\) 5.61159e9 1.46599 0.732994 0.680235i \(-0.238122\pi\)
0.732994 + 0.680235i \(0.238122\pi\)
\(548\) −3.47379e9 −0.901720
\(549\) 0 0
\(550\) −6.42765e8 −0.164734
\(551\) 2.65760e8 0.0676799
\(552\) 0 0
\(553\) −3.62008e8 −0.0910290
\(554\) 3.19305e9 0.797851
\(555\) 0 0
\(556\) 3.33250e9 0.822259
\(557\) −3.05994e7 −0.00750273 −0.00375136 0.999993i \(-0.501194\pi\)
−0.00375136 + 0.999993i \(0.501194\pi\)
\(558\) 0 0
\(559\) 1.59573e9 0.386382
\(560\) 8.78006e8 0.211271
\(561\) 0 0
\(562\) 1.14922e9 0.273103
\(563\) 8.06283e9 1.90418 0.952090 0.305818i \(-0.0989298\pi\)
0.952090 + 0.305818i \(0.0989298\pi\)
\(564\) 0 0
\(565\) −3.63463e8 −0.0847794
\(566\) −1.88959e8 −0.0438036
\(567\) 0 0
\(568\) −3.34931e9 −0.766896
\(569\) 6.34627e9 1.44419 0.722097 0.691792i \(-0.243178\pi\)
0.722097 + 0.691792i \(0.243178\pi\)
\(570\) 0 0
\(571\) −8.59406e8 −0.193184 −0.0965921 0.995324i \(-0.530794\pi\)
−0.0965921 + 0.995324i \(0.530794\pi\)
\(572\) −4.22228e8 −0.0943323
\(573\) 0 0
\(574\) 2.15564e9 0.475755
\(575\) 1.14705e9 0.251621
\(576\) 0 0
\(577\) −6.06450e9 −1.31426 −0.657128 0.753779i \(-0.728229\pi\)
−0.657128 + 0.753779i \(0.728229\pi\)
\(578\) −5.65707e9 −1.21855
\(579\) 0 0
\(580\) −4.30644e8 −0.0916475
\(581\) −8.69481e8 −0.183926
\(582\) 0 0
\(583\) 2.44027e9 0.510033
\(584\) −1.89007e9 −0.392674
\(585\) 0 0
\(586\) −1.41939e9 −0.291381
\(587\) 4.77389e9 0.974180 0.487090 0.873352i \(-0.338058\pi\)
0.487090 + 0.873352i \(0.338058\pi\)
\(588\) 0 0
\(589\) −2.68919e6 −0.000542273 0
\(590\) 5.63916e8 0.113040
\(591\) 0 0
\(592\) −2.79475e9 −0.553626
\(593\) 4.59686e9 0.905253 0.452627 0.891700i \(-0.350487\pi\)
0.452627 + 0.891700i \(0.350487\pi\)
\(594\) 0 0
\(595\) 7.98056e7 0.0155319
\(596\) −4.08293e9 −0.789970
\(597\) 0 0
\(598\) 2.23016e9 0.426463
\(599\) −5.98241e9 −1.13732 −0.568659 0.822573i \(-0.692538\pi\)
−0.568659 + 0.822573i \(0.692538\pi\)
\(600\) 0 0
\(601\) 9.86903e9 1.85444 0.927222 0.374513i \(-0.122190\pi\)
0.927222 + 0.374513i \(0.122190\pi\)
\(602\) 3.48293e9 0.650664
\(603\) 0 0
\(604\) 2.46375e9 0.454954
\(605\) 1.34166e9 0.246319
\(606\) 0 0
\(607\) −3.18007e9 −0.577134 −0.288567 0.957460i \(-0.593179\pi\)
−0.288567 + 0.957460i \(0.593179\pi\)
\(608\) −8.72457e8 −0.157428
\(609\) 0 0
\(610\) −1.94180e9 −0.346377
\(611\) −1.26883e9 −0.225039
\(612\) 0 0
\(613\) 6.44084e7 0.0112936 0.00564678 0.999984i \(-0.498203\pi\)
0.00564678 + 0.999984i \(0.498203\pi\)
\(614\) −5.20693e9 −0.907805
\(615\) 0 0
\(616\) 8.84499e8 0.152463
\(617\) 7.16777e9 1.22853 0.614266 0.789099i \(-0.289452\pi\)
0.614266 + 0.789099i \(0.289452\pi\)
\(618\) 0 0
\(619\) 8.16795e9 1.38419 0.692095 0.721807i \(-0.256688\pi\)
0.692095 + 0.721807i \(0.256688\pi\)
\(620\) 4.35762e6 0.000734309 0
\(621\) 0 0
\(622\) 4.13918e9 0.689681
\(623\) 2.11683e9 0.350734
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) −9.05340e9 −1.47503
\(627\) 0 0
\(628\) 5.88024e9 0.947406
\(629\) −2.54026e8 −0.0407006
\(630\) 0 0
\(631\) 4.18586e9 0.663257 0.331628 0.943410i \(-0.392402\pi\)
0.331628 + 0.943410i \(0.392402\pi\)
\(632\) 9.19869e8 0.144949
\(633\) 0 0
\(634\) −7.01518e9 −1.09327
\(635\) −3.86542e9 −0.599085
\(636\) 0 0
\(637\) 2.57056e8 0.0394040
\(638\) −2.16988e9 −0.330798
\(639\) 0 0
\(640\) −3.14184e9 −0.473756
\(641\) −8.24535e9 −1.23653 −0.618267 0.785968i \(-0.712165\pi\)
−0.618267 + 0.785968i \(0.712165\pi\)
\(642\) 0 0
\(643\) 1.13998e10 1.69105 0.845526 0.533934i \(-0.179287\pi\)
0.845526 + 0.533934i \(0.179287\pi\)
\(644\) 1.64461e9 0.242641
\(645\) 0 0
\(646\) −1.30391e8 −0.0190298
\(647\) 1.19774e10 1.73859 0.869295 0.494293i \(-0.164573\pi\)
0.869295 + 0.494293i \(0.164573\pi\)
\(648\) 0 0
\(649\) 9.60005e8 0.137853
\(650\) 4.74670e8 0.0677945
\(651\) 0 0
\(652\) −3.99573e9 −0.564586
\(653\) 1.30013e10 1.82722 0.913610 0.406591i \(-0.133283\pi\)
0.913610 + 0.406591i \(0.133283\pi\)
\(654\) 0 0
\(655\) −1.64254e8 −0.0228387
\(656\) −9.25642e9 −1.28020
\(657\) 0 0
\(658\) −2.76942e9 −0.378964
\(659\) −4.16352e9 −0.566711 −0.283356 0.959015i \(-0.591448\pi\)
−0.283356 + 0.959015i \(0.591448\pi\)
\(660\) 0 0
\(661\) −6.85816e9 −0.923640 −0.461820 0.886974i \(-0.652803\pi\)
−0.461820 + 0.886974i \(0.652803\pi\)
\(662\) 1.20938e10 1.62017
\(663\) 0 0
\(664\) 2.20937e9 0.292874
\(665\) −2.16019e8 −0.0284850
\(666\) 0 0
\(667\) 3.87228e9 0.505273
\(668\) −7.58033e9 −0.983944
\(669\) 0 0
\(670\) −4.38037e9 −0.562664
\(671\) −3.30570e9 −0.422410
\(672\) 0 0
\(673\) 1.17148e10 1.48144 0.740718 0.671816i \(-0.234486\pi\)
0.740718 + 0.671816i \(0.234486\pi\)
\(674\) 1.69741e10 2.13539
\(675\) 0 0
\(676\) −3.78655e9 −0.471444
\(677\) 9.82931e9 1.21748 0.608741 0.793369i \(-0.291675\pi\)
0.608741 + 0.793369i \(0.291675\pi\)
\(678\) 0 0
\(679\) 1.83921e9 0.225469
\(680\) −2.02788e8 −0.0247321
\(681\) 0 0
\(682\) 2.19566e7 0.00265046
\(683\) −1.53027e10 −1.83779 −0.918894 0.394504i \(-0.870916\pi\)
−0.918894 + 0.394504i \(0.870916\pi\)
\(684\) 0 0
\(685\) 6.64825e9 0.790297
\(686\) 5.61066e8 0.0663559
\(687\) 0 0
\(688\) −1.49559e10 −1.75086
\(689\) −1.80209e9 −0.209899
\(690\) 0 0
\(691\) 7.32282e9 0.844316 0.422158 0.906522i \(-0.361273\pi\)
0.422158 + 0.906522i \(0.361273\pi\)
\(692\) 2.99629e9 0.343726
\(693\) 0 0
\(694\) −1.47685e10 −1.67717
\(695\) −6.37785e9 −0.720655
\(696\) 0 0
\(697\) −8.41354e8 −0.0941162
\(698\) 3.75071e9 0.417465
\(699\) 0 0
\(700\) 3.50042e8 0.0385724
\(701\) −8.02517e9 −0.879916 −0.439958 0.898018i \(-0.645007\pi\)
−0.439958 + 0.898018i \(0.645007\pi\)
\(702\) 0 0
\(703\) 6.87601e8 0.0746437
\(704\) −6.31971e8 −0.0682642
\(705\) 0 0
\(706\) −6.89312e9 −0.737224
\(707\) 2.29387e9 0.244119
\(708\) 0 0
\(709\) −5.32921e9 −0.561567 −0.280783 0.959771i \(-0.590594\pi\)
−0.280783 + 0.959771i \(0.590594\pi\)
\(710\) −6.67875e9 −0.700311
\(711\) 0 0
\(712\) −5.37891e9 −0.558488
\(713\) −3.91830e7 −0.00404841
\(714\) 0 0
\(715\) 8.08073e8 0.0826760
\(716\) −6.07201e9 −0.618211
\(717\) 0 0
\(718\) −9.08181e9 −0.915666
\(719\) −9.89593e9 −0.992900 −0.496450 0.868065i \(-0.665363\pi\)
−0.496450 + 0.868065i \(0.665363\pi\)
\(720\) 0 0
\(721\) 1.69305e8 0.0168227
\(722\) −1.20752e10 −1.19403
\(723\) 0 0
\(724\) 1.21664e9 0.119146
\(725\) 8.24181e8 0.0803229
\(726\) 0 0
\(727\) 1.67155e10 1.61343 0.806715 0.590941i \(-0.201243\pi\)
0.806715 + 0.590941i \(0.201243\pi\)
\(728\) −6.53185e8 −0.0627446
\(729\) 0 0
\(730\) −3.76891e9 −0.358580
\(731\) −1.35940e9 −0.128717
\(732\) 0 0
\(733\) 1.23126e10 1.15475 0.577374 0.816480i \(-0.304077\pi\)
0.577374 + 0.816480i \(0.304077\pi\)
\(734\) −1.04756e9 −0.0977786
\(735\) 0 0
\(736\) −1.27122e10 −1.17530
\(737\) −7.45711e9 −0.686174
\(738\) 0 0
\(739\) −5.35923e9 −0.488480 −0.244240 0.969715i \(-0.578539\pi\)
−0.244240 + 0.969715i \(0.578539\pi\)
\(740\) −1.11421e9 −0.101077
\(741\) 0 0
\(742\) −3.93336e9 −0.353468
\(743\) 2.33377e9 0.208736 0.104368 0.994539i \(-0.466718\pi\)
0.104368 + 0.994539i \(0.466718\pi\)
\(744\) 0 0
\(745\) 7.81405e9 0.692356
\(746\) −1.87430e10 −1.65293
\(747\) 0 0
\(748\) 3.59696e8 0.0314254
\(749\) 2.92920e9 0.254720
\(750\) 0 0
\(751\) −8.49871e9 −0.732172 −0.366086 0.930581i \(-0.619302\pi\)
−0.366086 + 0.930581i \(0.619302\pi\)
\(752\) 1.18920e10 1.01975
\(753\) 0 0
\(754\) 1.60241e9 0.136136
\(755\) −4.71521e9 −0.398737
\(756\) 0 0
\(757\) −4.51420e9 −0.378220 −0.189110 0.981956i \(-0.560560\pi\)
−0.189110 + 0.981956i \(0.560560\pi\)
\(758\) 2.15675e10 1.79869
\(759\) 0 0
\(760\) 5.48908e8 0.0453578
\(761\) −6.64246e9 −0.546364 −0.273182 0.961962i \(-0.588076\pi\)
−0.273182 + 0.961962i \(0.588076\pi\)
\(762\) 0 0
\(763\) 3.21542e9 0.262061
\(764\) 1.59523e9 0.129418
\(765\) 0 0
\(766\) −2.30284e10 −1.85124
\(767\) −7.08945e8 −0.0567321
\(768\) 0 0
\(769\) −8.71913e8 −0.0691402 −0.0345701 0.999402i \(-0.511006\pi\)
−0.0345701 + 0.999402i \(0.511006\pi\)
\(770\) 1.76375e9 0.139226
\(771\) 0 0
\(772\) −7.43538e8 −0.0581624
\(773\) 2.09485e9 0.163127 0.0815633 0.996668i \(-0.474009\pi\)
0.0815633 + 0.996668i \(0.474009\pi\)
\(774\) 0 0
\(775\) −8.33976e6 −0.000643573 0
\(776\) −4.67347e9 −0.359024
\(777\) 0 0
\(778\) −2.39352e10 −1.82225
\(779\) 2.27739e9 0.172606
\(780\) 0 0
\(781\) −1.13698e10 −0.854035
\(782\) −1.89987e9 −0.142070
\(783\) 0 0
\(784\) −2.40925e9 −0.178556
\(785\) −1.12538e10 −0.830338
\(786\) 0 0
\(787\) −1.99449e10 −1.45855 −0.729273 0.684223i \(-0.760142\pi\)
−0.729273 + 0.684223i \(0.760142\pi\)
\(788\) −8.24908e8 −0.0600570
\(789\) 0 0
\(790\) 1.83428e9 0.132364
\(791\) 9.97342e8 0.0716517
\(792\) 0 0
\(793\) 2.44119e9 0.173838
\(794\) −1.00029e10 −0.709179
\(795\) 0 0
\(796\) 6.62290e9 0.465428
\(797\) 1.59998e10 1.11947 0.559733 0.828673i \(-0.310904\pi\)
0.559733 + 0.828673i \(0.310904\pi\)
\(798\) 0 0
\(799\) 1.08092e9 0.0749684
\(800\) −2.70568e9 −0.186836
\(801\) 0 0
\(802\) −2.51592e10 −1.72221
\(803\) −6.41616e9 −0.437291
\(804\) 0 0
\(805\) −3.14752e9 −0.212658
\(806\) −1.62146e7 −0.00109077
\(807\) 0 0
\(808\) −5.82878e9 −0.388721
\(809\) −3.39534e9 −0.225457 −0.112728 0.993626i \(-0.535959\pi\)
−0.112728 + 0.993626i \(0.535959\pi\)
\(810\) 0 0
\(811\) −1.53461e10 −1.01024 −0.505119 0.863050i \(-0.668551\pi\)
−0.505119 + 0.863050i \(0.668551\pi\)
\(812\) 1.18169e9 0.0774563
\(813\) 0 0
\(814\) −5.61412e9 −0.364835
\(815\) 7.64716e9 0.494822
\(816\) 0 0
\(817\) 3.67965e9 0.236064
\(818\) −3.11256e9 −0.198830
\(819\) 0 0
\(820\) −3.69033e9 −0.233731
\(821\) 1.04411e10 0.658484 0.329242 0.944246i \(-0.393207\pi\)
0.329242 + 0.944246i \(0.393207\pi\)
\(822\) 0 0
\(823\) 6.71827e9 0.420105 0.210052 0.977690i \(-0.432637\pi\)
0.210052 + 0.977690i \(0.432637\pi\)
\(824\) −4.30207e8 −0.0267875
\(825\) 0 0
\(826\) −1.54739e9 −0.0955363
\(827\) −9.51821e9 −0.585175 −0.292588 0.956239i \(-0.594516\pi\)
−0.292588 + 0.956239i \(0.594516\pi\)
\(828\) 0 0
\(829\) −1.09730e10 −0.668939 −0.334469 0.942407i \(-0.608557\pi\)
−0.334469 + 0.942407i \(0.608557\pi\)
\(830\) 4.40563e9 0.267445
\(831\) 0 0
\(832\) 4.66698e8 0.0280934
\(833\) −2.18987e8 −0.0131268
\(834\) 0 0
\(835\) 1.45075e10 0.862361
\(836\) −9.73631e8 −0.0576332
\(837\) 0 0
\(838\) 2.96937e10 1.74305
\(839\) 1.13557e10 0.663815 0.331907 0.943312i \(-0.392308\pi\)
0.331907 + 0.943312i \(0.392308\pi\)
\(840\) 0 0
\(841\) −1.44676e10 −0.838706
\(842\) −2.34990e10 −1.35662
\(843\) 0 0
\(844\) −1.57601e9 −0.0902322
\(845\) 7.24682e9 0.413189
\(846\) 0 0
\(847\) −3.68151e9 −0.208178
\(848\) 1.68901e10 0.951142
\(849\) 0 0
\(850\) −4.04372e8 −0.0225847
\(851\) 1.00187e10 0.557262
\(852\) 0 0
\(853\) −4.87491e9 −0.268934 −0.134467 0.990918i \(-0.542932\pi\)
−0.134467 + 0.990918i \(0.542932\pi\)
\(854\) 5.32829e9 0.292742
\(855\) 0 0
\(856\) −7.44316e9 −0.405601
\(857\) 1.58245e10 0.858809 0.429404 0.903112i \(-0.358724\pi\)
0.429404 + 0.903112i \(0.358724\pi\)
\(858\) 0 0
\(859\) 1.93322e10 1.04065 0.520325 0.853968i \(-0.325811\pi\)
0.520325 + 0.853968i \(0.325811\pi\)
\(860\) −5.96259e9 −0.319661
\(861\) 0 0
\(862\) 9.97485e9 0.530434
\(863\) 7.29451e9 0.386330 0.193165 0.981166i \(-0.438125\pi\)
0.193165 + 0.981166i \(0.438125\pi\)
\(864\) 0 0
\(865\) −5.73440e9 −0.301253
\(866\) −3.69589e10 −1.93378
\(867\) 0 0
\(868\) −1.19573e7 −0.000620604 0
\(869\) 3.12266e9 0.161419
\(870\) 0 0
\(871\) 5.50693e9 0.282388
\(872\) −8.17045e9 −0.417290
\(873\) 0 0
\(874\) 5.14260e9 0.260551
\(875\) −6.69922e8 −0.0338062
\(876\) 0 0
\(877\) 3.68227e10 1.84339 0.921694 0.387918i \(-0.126806\pi\)
0.921694 + 0.387918i \(0.126806\pi\)
\(878\) 1.93508e10 0.964868
\(879\) 0 0
\(880\) −7.57363e9 −0.374641
\(881\) 2.06876e10 1.01928 0.509640 0.860388i \(-0.329778\pi\)
0.509640 + 0.860388i \(0.329778\pi\)
\(882\) 0 0
\(883\) 1.05121e10 0.513841 0.256920 0.966433i \(-0.417292\pi\)
0.256920 + 0.966433i \(0.417292\pi\)
\(884\) −2.65629e8 −0.0129328
\(885\) 0 0
\(886\) −7.22989e9 −0.349232
\(887\) 2.30445e9 0.110875 0.0554376 0.998462i \(-0.482345\pi\)
0.0554376 + 0.998462i \(0.482345\pi\)
\(888\) 0 0
\(889\) 1.06067e10 0.506320
\(890\) −1.07259e10 −0.509998
\(891\) 0 0
\(892\) −1.52051e9 −0.0717320
\(893\) −2.92584e9 −0.137490
\(894\) 0 0
\(895\) 1.16208e10 0.541821
\(896\) 8.62122e9 0.400397
\(897\) 0 0
\(898\) 1.31585e10 0.606372
\(899\) −2.81537e7 −0.00129234
\(900\) 0 0
\(901\) 1.53521e9 0.0699246
\(902\) −1.85944e10 −0.843644
\(903\) 0 0
\(904\) −2.53427e9 −0.114094
\(905\) −2.32845e9 −0.104423
\(906\) 0 0
\(907\) 1.70138e10 0.757138 0.378569 0.925573i \(-0.376416\pi\)
0.378569 + 0.925573i \(0.376416\pi\)
\(908\) −1.05764e10 −0.468853
\(909\) 0 0
\(910\) −1.30249e9 −0.0572968
\(911\) −4.07352e10 −1.78507 −0.892536 0.450976i \(-0.851076\pi\)
−0.892536 + 0.450976i \(0.851076\pi\)
\(912\) 0 0
\(913\) 7.50009e9 0.326151
\(914\) 3.55574e10 1.54035
\(915\) 0 0
\(916\) −6.34523e9 −0.272781
\(917\) 4.50714e8 0.0193023
\(918\) 0 0
\(919\) −4.03604e10 −1.71534 −0.857671 0.514198i \(-0.828090\pi\)
−0.857671 + 0.514198i \(0.828090\pi\)
\(920\) 7.99791e9 0.338625
\(921\) 0 0
\(922\) 5.08554e10 2.13687
\(923\) 8.39640e9 0.351469
\(924\) 0 0
\(925\) 2.13240e9 0.0885877
\(926\) −2.15101e10 −0.890234
\(927\) 0 0
\(928\) −9.13396e9 −0.375181
\(929\) 8.81475e9 0.360707 0.180354 0.983602i \(-0.442276\pi\)
0.180354 + 0.983602i \(0.442276\pi\)
\(930\) 0 0
\(931\) 5.92756e8 0.0240742
\(932\) −4.03839e9 −0.163400
\(933\) 0 0
\(934\) 2.89037e10 1.16075
\(935\) −6.88399e8 −0.0275423
\(936\) 0 0
\(937\) 7.28321e9 0.289224 0.144612 0.989488i \(-0.453807\pi\)
0.144612 + 0.989488i \(0.453807\pi\)
\(938\) 1.20197e10 0.475538
\(939\) 0 0
\(940\) 4.74110e9 0.186179
\(941\) −5.48013e9 −0.214401 −0.107201 0.994237i \(-0.534189\pi\)
−0.107201 + 0.994237i \(0.534189\pi\)
\(942\) 0 0
\(943\) 3.31828e10 1.28861
\(944\) 6.64456e9 0.257078
\(945\) 0 0
\(946\) −3.00435e10 −1.15380
\(947\) −4.26478e10 −1.63182 −0.815909 0.578180i \(-0.803763\pi\)
−0.815909 + 0.578180i \(0.803763\pi\)
\(948\) 0 0
\(949\) 4.73821e9 0.179963
\(950\) 1.09456e9 0.0414197
\(951\) 0 0
\(952\) 5.56450e8 0.0209024
\(953\) −2.61130e10 −0.977307 −0.488654 0.872478i \(-0.662512\pi\)
−0.488654 + 0.872478i \(0.662512\pi\)
\(954\) 0 0
\(955\) −3.05300e9 −0.113427
\(956\) −7.17952e9 −0.265762
\(957\) 0 0
\(958\) 8.73290e8 0.0320907
\(959\) −1.82428e10 −0.667923
\(960\) 0 0
\(961\) −2.75123e10 −0.999990
\(962\) 4.14592e9 0.150144
\(963\) 0 0
\(964\) 1.32683e10 0.477029
\(965\) 1.42301e9 0.0509755
\(966\) 0 0
\(967\) 1.73017e10 0.615313 0.307656 0.951498i \(-0.400455\pi\)
0.307656 + 0.951498i \(0.400455\pi\)
\(968\) 9.35480e9 0.331490
\(969\) 0 0
\(970\) −9.31920e9 −0.327852
\(971\) 2.51678e8 0.00882221 0.00441111 0.999990i \(-0.498596\pi\)
0.00441111 + 0.999990i \(0.498596\pi\)
\(972\) 0 0
\(973\) 1.75008e10 0.609065
\(974\) −7.86029e9 −0.272573
\(975\) 0 0
\(976\) −2.28800e10 −0.787737
\(977\) 3.94226e10 1.35243 0.676215 0.736705i \(-0.263619\pi\)
0.676215 + 0.736705i \(0.263619\pi\)
\(978\) 0 0
\(979\) −1.82596e10 −0.621946
\(980\) −9.60515e8 −0.0325997
\(981\) 0 0
\(982\) 5.63440e10 1.89870
\(983\) 2.90217e9 0.0974507 0.0487253 0.998812i \(-0.484484\pi\)
0.0487253 + 0.998812i \(0.484484\pi\)
\(984\) 0 0
\(985\) 1.57874e9 0.0526359
\(986\) −1.36510e9 −0.0453518
\(987\) 0 0
\(988\) 7.19007e8 0.0237183
\(989\) 5.36145e10 1.76236
\(990\) 0 0
\(991\) −3.08412e10 −1.00664 −0.503319 0.864100i \(-0.667888\pi\)
−0.503319 + 0.864100i \(0.667888\pi\)
\(992\) 9.24252e7 0.00300607
\(993\) 0 0
\(994\) 1.83265e10 0.591871
\(995\) −1.26751e10 −0.407916
\(996\) 0 0
\(997\) −4.01320e10 −1.28250 −0.641251 0.767331i \(-0.721584\pi\)
−0.641251 + 0.767331i \(0.721584\pi\)
\(998\) 5.04196e10 1.60562
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.g.1.4 4
3.2 odd 2 105.8.a.h.1.1 4
15.14 odd 2 525.8.a.i.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.h.1.1 4 3.2 odd 2
315.8.a.g.1.4 4 1.1 even 1 trivial
525.8.a.i.1.4 4 15.14 odd 2