Properties

Label 315.8.a.g.1.2
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-9.12888\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.30777 q^{2} -41.3655 q^{4} -125.000 q^{5} +343.000 q^{7} +1576.41 q^{8} +1163.47 q^{10} +6789.89 q^{11} +14036.5 q^{13} -3192.56 q^{14} -9378.12 q^{16} +17740.4 q^{17} +47718.8 q^{19} +5170.68 q^{20} -63198.8 q^{22} +2469.43 q^{23} +15625.0 q^{25} -130649. q^{26} -14188.4 q^{28} -72802.1 q^{29} +260065. q^{31} -114492. q^{32} -165124. q^{34} -42875.0 q^{35} +118438. q^{37} -444156. q^{38} -197052. q^{40} -434543. q^{41} +599531. q^{43} -280867. q^{44} -22984.9 q^{46} -947778. q^{47} +117649. q^{49} -145434. q^{50} -580627. q^{52} +1.40065e6 q^{53} -848737. q^{55} +540710. q^{56} +677625. q^{58} +1.96604e6 q^{59} +726465. q^{61} -2.42063e6 q^{62} +2.26606e6 q^{64} -1.75457e6 q^{65} +756763. q^{67} -733841. q^{68} +399071. q^{70} -1.50605e6 q^{71} -6.38338e6 q^{73} -1.10240e6 q^{74} -1.97391e6 q^{76} +2.32893e6 q^{77} +4.43201e6 q^{79} +1.17227e6 q^{80} +4.04463e6 q^{82} -5.38121e6 q^{83} -2.21755e6 q^{85} -5.58030e6 q^{86} +1.07037e7 q^{88} +7.59795e6 q^{89} +4.81453e6 q^{91} -102149. q^{92} +8.82170e6 q^{94} -5.96485e6 q^{95} -7.91961e6 q^{97} -1.09505e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 11 q^{2} + 141 q^{4} - 500 q^{5} + 1372 q^{7} - 2133 q^{8} + 1375 q^{10} + 2708 q^{11} - 2212 q^{13} - 3773 q^{14} - 9599 q^{16} + 17016 q^{17} + 32668 q^{19} - 17625 q^{20} - 7196 q^{22} - 87696 q^{23}+ \cdots - 1294139 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.30777 −0.822698 −0.411349 0.911478i \(-0.634942\pi\)
−0.411349 + 0.911478i \(0.634942\pi\)
\(3\) 0 0
\(4\) −41.3655 −0.323168
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 1576.41 1.08857
\(9\) 0 0
\(10\) 1163.47 0.367922
\(11\) 6789.89 1.53811 0.769057 0.639180i \(-0.220726\pi\)
0.769057 + 0.639180i \(0.220726\pi\)
\(12\) 0 0
\(13\) 14036.5 1.77198 0.885988 0.463708i \(-0.153481\pi\)
0.885988 + 0.463708i \(0.153481\pi\)
\(14\) −3192.56 −0.310951
\(15\) 0 0
\(16\) −9378.12 −0.572395
\(17\) 17740.4 0.875775 0.437888 0.899030i \(-0.355727\pi\)
0.437888 + 0.899030i \(0.355727\pi\)
\(18\) 0 0
\(19\) 47718.8 1.59607 0.798036 0.602610i \(-0.205873\pi\)
0.798036 + 0.602610i \(0.205873\pi\)
\(20\) 5170.68 0.144525
\(21\) 0 0
\(22\) −63198.8 −1.26540
\(23\) 2469.43 0.0423204 0.0211602 0.999776i \(-0.493264\pi\)
0.0211602 + 0.999776i \(0.493264\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) −130649. −1.45780
\(27\) 0 0
\(28\) −14188.4 −0.122146
\(29\) −72802.1 −0.554307 −0.277154 0.960826i \(-0.589391\pi\)
−0.277154 + 0.960826i \(0.589391\pi\)
\(30\) 0 0
\(31\) 260065. 1.56789 0.783947 0.620828i \(-0.213203\pi\)
0.783947 + 0.620828i \(0.213203\pi\)
\(32\) −114492. −0.617659
\(33\) 0 0
\(34\) −165124. −0.720499
\(35\) −42875.0 −0.169031
\(36\) 0 0
\(37\) 118438. 0.384403 0.192201 0.981356i \(-0.438437\pi\)
0.192201 + 0.981356i \(0.438437\pi\)
\(38\) −444156. −1.31308
\(39\) 0 0
\(40\) −197052. −0.486822
\(41\) −434543. −0.984667 −0.492334 0.870407i \(-0.663856\pi\)
−0.492334 + 0.870407i \(0.663856\pi\)
\(42\) 0 0
\(43\) 599531. 1.14993 0.574966 0.818177i \(-0.305015\pi\)
0.574966 + 0.818177i \(0.305015\pi\)
\(44\) −280867. −0.497069
\(45\) 0 0
\(46\) −22984.9 −0.0348169
\(47\) −947778. −1.33157 −0.665785 0.746143i \(-0.731903\pi\)
−0.665785 + 0.746143i \(0.731903\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) −145434. −0.164540
\(51\) 0 0
\(52\) −580627. −0.572646
\(53\) 1.40065e6 1.29230 0.646151 0.763210i \(-0.276378\pi\)
0.646151 + 0.763210i \(0.276378\pi\)
\(54\) 0 0
\(55\) −848737. −0.687866
\(56\) 540710. 0.411440
\(57\) 0 0
\(58\) 677625. 0.456028
\(59\) 1.96604e6 1.24626 0.623132 0.782117i \(-0.285860\pi\)
0.623132 + 0.782117i \(0.285860\pi\)
\(60\) 0 0
\(61\) 726465. 0.409789 0.204894 0.978784i \(-0.434315\pi\)
0.204894 + 0.978784i \(0.434315\pi\)
\(62\) −2.42063e6 −1.28990
\(63\) 0 0
\(64\) 2.26606e6 1.08054
\(65\) −1.75457e6 −0.792452
\(66\) 0 0
\(67\) 756763. 0.307396 0.153698 0.988118i \(-0.450882\pi\)
0.153698 + 0.988118i \(0.450882\pi\)
\(68\) −733841. −0.283022
\(69\) 0 0
\(70\) 399071. 0.139061
\(71\) −1.50605e6 −0.499386 −0.249693 0.968325i \(-0.580330\pi\)
−0.249693 + 0.968325i \(0.580330\pi\)
\(72\) 0 0
\(73\) −6.38338e6 −1.92053 −0.960265 0.279091i \(-0.909967\pi\)
−0.960265 + 0.279091i \(0.909967\pi\)
\(74\) −1.10240e6 −0.316247
\(75\) 0 0
\(76\) −1.97391e6 −0.515799
\(77\) 2.32893e6 0.581353
\(78\) 0 0
\(79\) 4.43201e6 1.01136 0.505680 0.862721i \(-0.331241\pi\)
0.505680 + 0.862721i \(0.331241\pi\)
\(80\) 1.17227e6 0.255983
\(81\) 0 0
\(82\) 4.04463e6 0.810084
\(83\) −5.38121e6 −1.03301 −0.516507 0.856283i \(-0.672768\pi\)
−0.516507 + 0.856283i \(0.672768\pi\)
\(84\) 0 0
\(85\) −2.21755e6 −0.391659
\(86\) −5.58030e6 −0.946047
\(87\) 0 0
\(88\) 1.07037e7 1.67434
\(89\) 7.59795e6 1.14243 0.571217 0.820799i \(-0.306471\pi\)
0.571217 + 0.820799i \(0.306471\pi\)
\(90\) 0 0
\(91\) 4.81453e6 0.669744
\(92\) −102149. −0.0136766
\(93\) 0 0
\(94\) 8.82170e6 1.09548
\(95\) −5.96485e6 −0.713785
\(96\) 0 0
\(97\) −7.91961e6 −0.881055 −0.440527 0.897739i \(-0.645209\pi\)
−0.440527 + 0.897739i \(0.645209\pi\)
\(98\) −1.09505e6 −0.117528
\(99\) 0 0
\(100\) −646335. −0.0646335
\(101\) −1.09106e7 −1.05371 −0.526856 0.849954i \(-0.676629\pi\)
−0.526856 + 0.849954i \(0.676629\pi\)
\(102\) 0 0
\(103\) 1.28843e7 1.16180 0.580898 0.813977i \(-0.302702\pi\)
0.580898 + 0.813977i \(0.302702\pi\)
\(104\) 2.21274e7 1.92892
\(105\) 0 0
\(106\) −1.30369e7 −1.06317
\(107\) 1.28614e6 0.101495 0.0507475 0.998712i \(-0.483840\pi\)
0.0507475 + 0.998712i \(0.483840\pi\)
\(108\) 0 0
\(109\) −2.51631e7 −1.86111 −0.930554 0.366155i \(-0.880674\pi\)
−0.930554 + 0.366155i \(0.880674\pi\)
\(110\) 7.89984e6 0.565906
\(111\) 0 0
\(112\) −3.21670e6 −0.216345
\(113\) −2.88841e6 −0.188315 −0.0941575 0.995557i \(-0.530016\pi\)
−0.0941575 + 0.995557i \(0.530016\pi\)
\(114\) 0 0
\(115\) −308679. −0.0189263
\(116\) 3.01149e6 0.179134
\(117\) 0 0
\(118\) −1.82994e7 −1.02530
\(119\) 6.08497e6 0.331012
\(120\) 0 0
\(121\) 2.66155e7 1.36580
\(122\) −6.76176e6 −0.337132
\(123\) 0 0
\(124\) −1.07577e7 −0.506693
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) −2.03929e7 −0.883418 −0.441709 0.897158i \(-0.645628\pi\)
−0.441709 + 0.897158i \(0.645628\pi\)
\(128\) −6.43704e6 −0.271301
\(129\) 0 0
\(130\) 1.63311e7 0.651949
\(131\) −4.77587e6 −0.185611 −0.0928054 0.995684i \(-0.529583\pi\)
−0.0928054 + 0.995684i \(0.529583\pi\)
\(132\) 0 0
\(133\) 1.63676e7 0.603258
\(134\) −7.04377e6 −0.252894
\(135\) 0 0
\(136\) 2.79663e7 0.953341
\(137\) 2.50604e7 0.832657 0.416328 0.909214i \(-0.363317\pi\)
0.416328 + 0.909214i \(0.363317\pi\)
\(138\) 0 0
\(139\) −1.35839e7 −0.429014 −0.214507 0.976722i \(-0.568814\pi\)
−0.214507 + 0.976722i \(0.568814\pi\)
\(140\) 1.77354e6 0.0546253
\(141\) 0 0
\(142\) 1.40180e7 0.410844
\(143\) 9.53065e7 2.72550
\(144\) 0 0
\(145\) 9.10026e6 0.247894
\(146\) 5.94151e7 1.58002
\(147\) 0 0
\(148\) −4.89926e6 −0.124226
\(149\) 2.97393e6 0.0736509 0.0368255 0.999322i \(-0.488275\pi\)
0.0368255 + 0.999322i \(0.488275\pi\)
\(150\) 0 0
\(151\) 2.41110e7 0.569897 0.284949 0.958543i \(-0.408023\pi\)
0.284949 + 0.958543i \(0.408023\pi\)
\(152\) 7.52247e7 1.73743
\(153\) 0 0
\(154\) −2.16772e7 −0.478278
\(155\) −3.25082e7 −0.701184
\(156\) 0 0
\(157\) 3.90767e7 0.805878 0.402939 0.915227i \(-0.367989\pi\)
0.402939 + 0.915227i \(0.367989\pi\)
\(158\) −4.12521e7 −0.832045
\(159\) 0 0
\(160\) 1.43115e7 0.276226
\(161\) 847015. 0.0159956
\(162\) 0 0
\(163\) 3.63985e7 0.658305 0.329152 0.944277i \(-0.393237\pi\)
0.329152 + 0.944277i \(0.393237\pi\)
\(164\) 1.79751e7 0.318213
\(165\) 0 0
\(166\) 5.00870e7 0.849859
\(167\) 1.42610e7 0.236942 0.118471 0.992958i \(-0.462201\pi\)
0.118471 + 0.992958i \(0.462201\pi\)
\(168\) 0 0
\(169\) 1.34276e8 2.13990
\(170\) 2.06405e7 0.322217
\(171\) 0 0
\(172\) −2.47999e7 −0.371621
\(173\) −4.80295e7 −0.705257 −0.352628 0.935763i \(-0.614712\pi\)
−0.352628 + 0.935763i \(0.614712\pi\)
\(174\) 0 0
\(175\) 5.35938e6 0.0755929
\(176\) −6.36764e7 −0.880409
\(177\) 0 0
\(178\) −7.07199e7 −0.939879
\(179\) −5.97259e7 −0.778354 −0.389177 0.921163i \(-0.627241\pi\)
−0.389177 + 0.921163i \(0.627241\pi\)
\(180\) 0 0
\(181\) 7.26855e7 0.911115 0.455557 0.890206i \(-0.349440\pi\)
0.455557 + 0.890206i \(0.349440\pi\)
\(182\) −4.48125e7 −0.550997
\(183\) 0 0
\(184\) 3.89285e6 0.0460686
\(185\) −1.48048e7 −0.171910
\(186\) 0 0
\(187\) 1.20456e8 1.34704
\(188\) 3.92053e7 0.430320
\(189\) 0 0
\(190\) 5.55195e7 0.587229
\(191\) 7.16696e7 0.744249 0.372124 0.928183i \(-0.378629\pi\)
0.372124 + 0.928183i \(0.378629\pi\)
\(192\) 0 0
\(193\) 1.68899e8 1.69113 0.845566 0.533871i \(-0.179263\pi\)
0.845566 + 0.533871i \(0.179263\pi\)
\(194\) 7.37139e7 0.724842
\(195\) 0 0
\(196\) −4.86660e6 −0.0461668
\(197\) −1.43002e8 −1.33263 −0.666316 0.745669i \(-0.732130\pi\)
−0.666316 + 0.745669i \(0.732130\pi\)
\(198\) 0 0
\(199\) 5.31848e7 0.478411 0.239206 0.970969i \(-0.423113\pi\)
0.239206 + 0.970969i \(0.423113\pi\)
\(200\) 2.46315e7 0.217714
\(201\) 0 0
\(202\) 1.01553e8 0.866887
\(203\) −2.49711e7 −0.209508
\(204\) 0 0
\(205\) 5.43179e7 0.440357
\(206\) −1.19924e8 −0.955807
\(207\) 0 0
\(208\) −1.31636e8 −1.01427
\(209\) 3.24006e8 2.45494
\(210\) 0 0
\(211\) −3.30646e7 −0.242312 −0.121156 0.992633i \(-0.538660\pi\)
−0.121156 + 0.992633i \(0.538660\pi\)
\(212\) −5.79385e7 −0.417630
\(213\) 0 0
\(214\) −1.19711e7 −0.0834998
\(215\) −7.49414e7 −0.514265
\(216\) 0 0
\(217\) 8.92025e7 0.592608
\(218\) 2.34212e8 1.53113
\(219\) 0 0
\(220\) 3.51084e7 0.222296
\(221\) 2.49014e8 1.55185
\(222\) 0 0
\(223\) 8.22325e6 0.0496565 0.0248283 0.999692i \(-0.492096\pi\)
0.0248283 + 0.999692i \(0.492096\pi\)
\(224\) −3.92706e7 −0.233453
\(225\) 0 0
\(226\) 2.68847e7 0.154926
\(227\) −2.49659e8 −1.41663 −0.708314 0.705897i \(-0.750544\pi\)
−0.708314 + 0.705897i \(0.750544\pi\)
\(228\) 0 0
\(229\) −3.17343e8 −1.74624 −0.873122 0.487501i \(-0.837908\pi\)
−0.873122 + 0.487501i \(0.837908\pi\)
\(230\) 2.87311e6 0.0155706
\(231\) 0 0
\(232\) −1.14766e8 −0.603401
\(233\) −1.67569e8 −0.867856 −0.433928 0.900948i \(-0.642873\pi\)
−0.433928 + 0.900948i \(0.642873\pi\)
\(234\) 0 0
\(235\) 1.18472e8 0.595496
\(236\) −8.13261e7 −0.402752
\(237\) 0 0
\(238\) −5.66374e7 −0.272323
\(239\) 2.17743e8 1.03169 0.515847 0.856681i \(-0.327477\pi\)
0.515847 + 0.856681i \(0.327477\pi\)
\(240\) 0 0
\(241\) −3.09126e8 −1.42258 −0.711288 0.702901i \(-0.751888\pi\)
−0.711288 + 0.702901i \(0.751888\pi\)
\(242\) −2.47731e8 −1.12364
\(243\) 0 0
\(244\) −3.00505e7 −0.132430
\(245\) −1.47061e7 −0.0638877
\(246\) 0 0
\(247\) 6.69807e8 2.82820
\(248\) 4.09971e8 1.70676
\(249\) 0 0
\(250\) 1.81792e7 0.0735844
\(251\) −2.51050e8 −1.00208 −0.501040 0.865424i \(-0.667049\pi\)
−0.501040 + 0.865424i \(0.667049\pi\)
\(252\) 0 0
\(253\) 1.67672e7 0.0650936
\(254\) 1.89812e8 0.726786
\(255\) 0 0
\(256\) −2.30141e8 −0.857343
\(257\) 3.91200e8 1.43758 0.718791 0.695226i \(-0.244696\pi\)
0.718791 + 0.695226i \(0.244696\pi\)
\(258\) 0 0
\(259\) 4.06244e7 0.145291
\(260\) 7.25784e7 0.256095
\(261\) 0 0
\(262\) 4.44527e7 0.152702
\(263\) 1.12277e8 0.380581 0.190291 0.981728i \(-0.439057\pi\)
0.190291 + 0.981728i \(0.439057\pi\)
\(264\) 0 0
\(265\) −1.75081e8 −0.577935
\(266\) −1.52345e8 −0.496299
\(267\) 0 0
\(268\) −3.13038e7 −0.0993404
\(269\) −2.96616e8 −0.929097 −0.464548 0.885548i \(-0.653783\pi\)
−0.464548 + 0.885548i \(0.653783\pi\)
\(270\) 0 0
\(271\) −5.01060e8 −1.52932 −0.764658 0.644436i \(-0.777092\pi\)
−0.764658 + 0.644436i \(0.777092\pi\)
\(272\) −1.66372e8 −0.501290
\(273\) 0 0
\(274\) −2.33256e8 −0.685025
\(275\) 1.06092e8 0.307623
\(276\) 0 0
\(277\) −2.72956e8 −0.771638 −0.385819 0.922575i \(-0.626081\pi\)
−0.385819 + 0.922575i \(0.626081\pi\)
\(278\) 1.26435e8 0.352949
\(279\) 0 0
\(280\) −6.75888e7 −0.184002
\(281\) −5.96358e8 −1.60338 −0.801688 0.597743i \(-0.796064\pi\)
−0.801688 + 0.597743i \(0.796064\pi\)
\(282\) 0 0
\(283\) 4.28880e8 1.12482 0.562410 0.826858i \(-0.309874\pi\)
0.562410 + 0.826858i \(0.309874\pi\)
\(284\) 6.22986e7 0.161385
\(285\) 0 0
\(286\) −8.87091e8 −2.24227
\(287\) −1.49048e8 −0.372169
\(288\) 0 0
\(289\) −9.56161e7 −0.233017
\(290\) −8.47031e7 −0.203942
\(291\) 0 0
\(292\) 2.64052e8 0.620653
\(293\) −2.59401e8 −0.602470 −0.301235 0.953550i \(-0.597399\pi\)
−0.301235 + 0.953550i \(0.597399\pi\)
\(294\) 0 0
\(295\) −2.45755e8 −0.557346
\(296\) 1.86708e8 0.418448
\(297\) 0 0
\(298\) −2.76806e7 −0.0605925
\(299\) 3.46623e7 0.0749907
\(300\) 0 0
\(301\) 2.05639e8 0.434633
\(302\) −2.24420e8 −0.468853
\(303\) 0 0
\(304\) −4.47513e8 −0.913583
\(305\) −9.08081e7 −0.183263
\(306\) 0 0
\(307\) 1.96834e8 0.388254 0.194127 0.980976i \(-0.437813\pi\)
0.194127 + 0.980976i \(0.437813\pi\)
\(308\) −9.63374e7 −0.187874
\(309\) 0 0
\(310\) 3.02579e8 0.576862
\(311\) 2.98512e8 0.562730 0.281365 0.959601i \(-0.409213\pi\)
0.281365 + 0.959601i \(0.409213\pi\)
\(312\) 0 0
\(313\) −2.65037e7 −0.0488541 −0.0244271 0.999702i \(-0.507776\pi\)
−0.0244271 + 0.999702i \(0.507776\pi\)
\(314\) −3.63717e8 −0.662994
\(315\) 0 0
\(316\) −1.83332e8 −0.326839
\(317\) −2.07006e8 −0.364986 −0.182493 0.983207i \(-0.558417\pi\)
−0.182493 + 0.983207i \(0.558417\pi\)
\(318\) 0 0
\(319\) −4.94318e8 −0.852588
\(320\) −2.83258e8 −0.483233
\(321\) 0 0
\(322\) −7.88382e6 −0.0131596
\(323\) 8.46552e8 1.39780
\(324\) 0 0
\(325\) 2.19321e8 0.354395
\(326\) −3.38789e8 −0.541586
\(327\) 0 0
\(328\) −6.85020e8 −1.07188
\(329\) −3.25088e8 −0.503286
\(330\) 0 0
\(331\) −4.69055e8 −0.710929 −0.355464 0.934690i \(-0.615677\pi\)
−0.355464 + 0.934690i \(0.615677\pi\)
\(332\) 2.22596e8 0.333837
\(333\) 0 0
\(334\) −1.32738e8 −0.194932
\(335\) −9.45954e7 −0.137472
\(336\) 0 0
\(337\) 8.39783e7 0.119526 0.0597630 0.998213i \(-0.480965\pi\)
0.0597630 + 0.998213i \(0.480965\pi\)
\(338\) −1.24981e9 −1.76049
\(339\) 0 0
\(340\) 9.17301e7 0.126571
\(341\) 1.76582e9 2.41160
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 9.45109e8 1.25178
\(345\) 0 0
\(346\) 4.47048e8 0.580213
\(347\) −1.28097e9 −1.64583 −0.822916 0.568163i \(-0.807654\pi\)
−0.822916 + 0.568163i \(0.807654\pi\)
\(348\) 0 0
\(349\) 1.71031e8 0.215370 0.107685 0.994185i \(-0.465656\pi\)
0.107685 + 0.994185i \(0.465656\pi\)
\(350\) −4.98838e7 −0.0621901
\(351\) 0 0
\(352\) −7.77386e8 −0.950030
\(353\) −9.88908e8 −1.19659 −0.598294 0.801277i \(-0.704154\pi\)
−0.598294 + 0.801277i \(0.704154\pi\)
\(354\) 0 0
\(355\) 1.88257e8 0.223332
\(356\) −3.14293e8 −0.369198
\(357\) 0 0
\(358\) 5.55915e8 0.640351
\(359\) −2.20546e8 −0.251576 −0.125788 0.992057i \(-0.540146\pi\)
−0.125788 + 0.992057i \(0.540146\pi\)
\(360\) 0 0
\(361\) 1.38322e9 1.54744
\(362\) −6.76540e8 −0.749572
\(363\) 0 0
\(364\) −1.99155e8 −0.216440
\(365\) 7.97923e8 0.858887
\(366\) 0 0
\(367\) 9.89258e8 1.04467 0.522334 0.852741i \(-0.325061\pi\)
0.522334 + 0.852741i \(0.325061\pi\)
\(368\) −2.31586e7 −0.0242240
\(369\) 0 0
\(370\) 1.37800e8 0.141430
\(371\) 4.80423e8 0.488444
\(372\) 0 0
\(373\) −1.37864e8 −0.137553 −0.0687764 0.997632i \(-0.521910\pi\)
−0.0687764 + 0.997632i \(0.521910\pi\)
\(374\) −1.12117e9 −1.10821
\(375\) 0 0
\(376\) −1.49409e9 −1.44950
\(377\) −1.02189e9 −0.982220
\(378\) 0 0
\(379\) −8.30994e8 −0.784080 −0.392040 0.919948i \(-0.628231\pi\)
−0.392040 + 0.919948i \(0.628231\pi\)
\(380\) 2.46739e8 0.230672
\(381\) 0 0
\(382\) −6.67084e8 −0.612292
\(383\) 1.89312e9 1.72180 0.860901 0.508772i \(-0.169901\pi\)
0.860901 + 0.508772i \(0.169901\pi\)
\(384\) 0 0
\(385\) −2.91117e8 −0.259989
\(386\) −1.57208e9 −1.39129
\(387\) 0 0
\(388\) 3.27598e8 0.284728
\(389\) 2.11450e9 1.82131 0.910655 0.413169i \(-0.135578\pi\)
0.910655 + 0.413169i \(0.135578\pi\)
\(390\) 0 0
\(391\) 4.38088e7 0.0370632
\(392\) 1.85464e8 0.155510
\(393\) 0 0
\(394\) 1.33103e9 1.09635
\(395\) −5.54002e8 −0.452294
\(396\) 0 0
\(397\) −1.96954e9 −1.57978 −0.789891 0.613247i \(-0.789863\pi\)
−0.789891 + 0.613247i \(0.789863\pi\)
\(398\) −4.95031e8 −0.393588
\(399\) 0 0
\(400\) −1.46533e8 −0.114479
\(401\) −2.12538e9 −1.64601 −0.823003 0.568037i \(-0.807703\pi\)
−0.823003 + 0.568037i \(0.807703\pi\)
\(402\) 0 0
\(403\) 3.65042e9 2.77827
\(404\) 4.51320e8 0.340526
\(405\) 0 0
\(406\) 2.32425e8 0.172362
\(407\) 8.04184e8 0.591255
\(408\) 0 0
\(409\) −2.47760e9 −1.79061 −0.895303 0.445457i \(-0.853041\pi\)
−0.895303 + 0.445457i \(0.853041\pi\)
\(410\) −5.05579e8 −0.362281
\(411\) 0 0
\(412\) −5.32964e8 −0.375455
\(413\) 6.74351e8 0.471044
\(414\) 0 0
\(415\) 6.72651e8 0.461978
\(416\) −1.60707e9 −1.09448
\(417\) 0 0
\(418\) −3.01577e9 −2.01967
\(419\) 2.06521e9 1.37156 0.685781 0.727808i \(-0.259461\pi\)
0.685781 + 0.727808i \(0.259461\pi\)
\(420\) 0 0
\(421\) −2.63000e9 −1.71778 −0.858890 0.512160i \(-0.828846\pi\)
−0.858890 + 0.512160i \(0.828846\pi\)
\(422\) 3.07757e8 0.199349
\(423\) 0 0
\(424\) 2.20800e9 1.40676
\(425\) 2.77194e8 0.175155
\(426\) 0 0
\(427\) 2.49177e8 0.154886
\(428\) −5.32017e7 −0.0327999
\(429\) 0 0
\(430\) 6.97537e8 0.423085
\(431\) −3.92684e8 −0.236251 −0.118125 0.992999i \(-0.537688\pi\)
−0.118125 + 0.992999i \(0.537688\pi\)
\(432\) 0 0
\(433\) 2.79693e9 1.65567 0.827836 0.560970i \(-0.189572\pi\)
0.827836 + 0.560970i \(0.189572\pi\)
\(434\) −8.30276e8 −0.487538
\(435\) 0 0
\(436\) 1.04088e9 0.601450
\(437\) 1.17838e8 0.0675463
\(438\) 0 0
\(439\) 3.20853e8 0.181001 0.0905003 0.995896i \(-0.471153\pi\)
0.0905003 + 0.995896i \(0.471153\pi\)
\(440\) −1.33796e9 −0.748788
\(441\) 0 0
\(442\) −2.31776e9 −1.27671
\(443\) 1.82780e9 0.998887 0.499443 0.866346i \(-0.333538\pi\)
0.499443 + 0.866346i \(0.333538\pi\)
\(444\) 0 0
\(445\) −9.49743e8 −0.510912
\(446\) −7.65401e7 −0.0408523
\(447\) 0 0
\(448\) 7.77259e8 0.408407
\(449\) 6.98256e7 0.0364043 0.0182021 0.999834i \(-0.494206\pi\)
0.0182021 + 0.999834i \(0.494206\pi\)
\(450\) 0 0
\(451\) −2.95050e9 −1.51453
\(452\) 1.19481e8 0.0608573
\(453\) 0 0
\(454\) 2.32376e9 1.16546
\(455\) −6.01816e8 −0.299519
\(456\) 0 0
\(457\) −7.05463e7 −0.0345754 −0.0172877 0.999851i \(-0.505503\pi\)
−0.0172877 + 0.999851i \(0.505503\pi\)
\(458\) 2.95376e9 1.43663
\(459\) 0 0
\(460\) 1.27686e7 0.00611635
\(461\) 1.27040e9 0.603929 0.301965 0.953319i \(-0.402358\pi\)
0.301965 + 0.953319i \(0.402358\pi\)
\(462\) 0 0
\(463\) −1.50939e9 −0.706754 −0.353377 0.935481i \(-0.614967\pi\)
−0.353377 + 0.935481i \(0.614967\pi\)
\(464\) 6.82746e8 0.317283
\(465\) 0 0
\(466\) 1.55969e9 0.713983
\(467\) 4.10525e9 1.86522 0.932611 0.360883i \(-0.117524\pi\)
0.932611 + 0.360883i \(0.117524\pi\)
\(468\) 0 0
\(469\) 2.59570e8 0.116185
\(470\) −1.10271e9 −0.489914
\(471\) 0 0
\(472\) 3.09929e9 1.35664
\(473\) 4.07075e9 1.76873
\(474\) 0 0
\(475\) 7.45607e8 0.319214
\(476\) −2.51707e8 −0.106972
\(477\) 0 0
\(478\) −2.02670e9 −0.848773
\(479\) −3.40485e9 −1.41555 −0.707773 0.706440i \(-0.750300\pi\)
−0.707773 + 0.706440i \(0.750300\pi\)
\(480\) 0 0
\(481\) 1.66246e9 0.681153
\(482\) 2.87727e9 1.17035
\(483\) 0 0
\(484\) −1.10096e9 −0.441381
\(485\) 9.89952e8 0.394020
\(486\) 0 0
\(487\) 2.93163e9 1.15016 0.575079 0.818098i \(-0.304971\pi\)
0.575079 + 0.818098i \(0.304971\pi\)
\(488\) 1.14521e9 0.446083
\(489\) 0 0
\(490\) 1.36881e8 0.0525603
\(491\) −1.54232e9 −0.588014 −0.294007 0.955803i \(-0.594989\pi\)
−0.294007 + 0.955803i \(0.594989\pi\)
\(492\) 0 0
\(493\) −1.29154e9 −0.485449
\(494\) −6.23441e9 −2.32676
\(495\) 0 0
\(496\) −2.43893e9 −0.897455
\(497\) −5.16577e8 −0.188750
\(498\) 0 0
\(499\) 1.16624e9 0.420181 0.210091 0.977682i \(-0.432624\pi\)
0.210091 + 0.977682i \(0.432624\pi\)
\(500\) 8.07919e7 0.0289050
\(501\) 0 0
\(502\) 2.33672e9 0.824409
\(503\) −2.81637e9 −0.986739 −0.493369 0.869820i \(-0.664235\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(504\) 0 0
\(505\) 1.36382e9 0.471235
\(506\) −1.56065e8 −0.0535524
\(507\) 0 0
\(508\) 8.43562e8 0.285492
\(509\) 1.97626e9 0.664252 0.332126 0.943235i \(-0.392234\pi\)
0.332126 + 0.943235i \(0.392234\pi\)
\(510\) 0 0
\(511\) −2.18950e9 −0.725892
\(512\) 2.96604e9 0.976636
\(513\) 0 0
\(514\) −3.64120e9 −1.18270
\(515\) −1.61053e9 −0.519571
\(516\) 0 0
\(517\) −6.43531e9 −2.04811
\(518\) −3.78122e8 −0.119530
\(519\) 0 0
\(520\) −2.76592e9 −0.862638
\(521\) −3.49564e9 −1.08292 −0.541458 0.840728i \(-0.682127\pi\)
−0.541458 + 0.840728i \(0.682127\pi\)
\(522\) 0 0
\(523\) 4.42047e9 1.35118 0.675589 0.737278i \(-0.263889\pi\)
0.675589 + 0.737278i \(0.263889\pi\)
\(524\) 1.97556e8 0.0599834
\(525\) 0 0
\(526\) −1.04505e9 −0.313103
\(527\) 4.61367e9 1.37312
\(528\) 0 0
\(529\) −3.39873e9 −0.998209
\(530\) 1.62961e9 0.475466
\(531\) 0 0
\(532\) −6.77052e8 −0.194954
\(533\) −6.09948e9 −1.74481
\(534\) 0 0
\(535\) −1.60767e8 −0.0453900
\(536\) 1.19297e9 0.334621
\(537\) 0 0
\(538\) 2.76083e9 0.764366
\(539\) 7.98824e8 0.219731
\(540\) 0 0
\(541\) 3.20008e9 0.868901 0.434451 0.900696i \(-0.356943\pi\)
0.434451 + 0.900696i \(0.356943\pi\)
\(542\) 4.66375e9 1.25817
\(543\) 0 0
\(544\) −2.03113e9 −0.540931
\(545\) 3.14539e9 0.832313
\(546\) 0 0
\(547\) −5.82743e9 −1.52237 −0.761187 0.648533i \(-0.775383\pi\)
−0.761187 + 0.648533i \(0.775383\pi\)
\(548\) −1.03663e9 −0.269088
\(549\) 0 0
\(550\) −9.87481e8 −0.253081
\(551\) −3.47403e9 −0.884714
\(552\) 0 0
\(553\) 1.52018e9 0.382258
\(554\) 2.54061e9 0.634825
\(555\) 0 0
\(556\) 5.61903e8 0.138643
\(557\) 6.64579e9 1.62950 0.814748 0.579815i \(-0.196875\pi\)
0.814748 + 0.579815i \(0.196875\pi\)
\(558\) 0 0
\(559\) 8.41534e9 2.03765
\(560\) 4.02087e8 0.0967524
\(561\) 0 0
\(562\) 5.55077e9 1.31909
\(563\) −5.27415e9 −1.24558 −0.622792 0.782387i \(-0.714002\pi\)
−0.622792 + 0.782387i \(0.714002\pi\)
\(564\) 0 0
\(565\) 3.61052e8 0.0842170
\(566\) −3.99191e9 −0.925388
\(567\) 0 0
\(568\) −2.37417e9 −0.543616
\(569\) 2.71359e9 0.617520 0.308760 0.951140i \(-0.400086\pi\)
0.308760 + 0.951140i \(0.400086\pi\)
\(570\) 0 0
\(571\) −1.11076e9 −0.249686 −0.124843 0.992177i \(-0.539843\pi\)
−0.124843 + 0.992177i \(0.539843\pi\)
\(572\) −3.94240e9 −0.880794
\(573\) 0 0
\(574\) 1.38731e9 0.306183
\(575\) 3.85849e7 0.00846408
\(576\) 0 0
\(577\) 7.08441e9 1.53528 0.767642 0.640879i \(-0.221430\pi\)
0.767642 + 0.640879i \(0.221430\pi\)
\(578\) 8.89972e8 0.191703
\(579\) 0 0
\(580\) −3.76436e8 −0.0801113
\(581\) −1.84575e9 −0.390443
\(582\) 0 0
\(583\) 9.51026e9 1.98771
\(584\) −1.00629e10 −2.09063
\(585\) 0 0
\(586\) 2.41445e9 0.495651
\(587\) 3.01875e8 0.0616019 0.0308010 0.999526i \(-0.490194\pi\)
0.0308010 + 0.999526i \(0.490194\pi\)
\(588\) 0 0
\(589\) 1.24100e10 2.50247
\(590\) 2.28743e9 0.458528
\(591\) 0 0
\(592\) −1.11073e9 −0.220030
\(593\) 7.32796e9 1.44308 0.721542 0.692371i \(-0.243434\pi\)
0.721542 + 0.692371i \(0.243434\pi\)
\(594\) 0 0
\(595\) −7.60621e8 −0.148033
\(596\) −1.23018e8 −0.0238016
\(597\) 0 0
\(598\) −3.22628e8 −0.0616947
\(599\) 5.96777e9 1.13454 0.567268 0.823533i \(-0.308000\pi\)
0.567268 + 0.823533i \(0.308000\pi\)
\(600\) 0 0
\(601\) −9.24419e9 −1.73703 −0.868517 0.495660i \(-0.834926\pi\)
−0.868517 + 0.495660i \(0.834926\pi\)
\(602\) −1.91404e9 −0.357572
\(603\) 0 0
\(604\) −9.97364e8 −0.184172
\(605\) −3.32694e9 −0.610802
\(606\) 0 0
\(607\) 4.53221e9 0.822526 0.411263 0.911517i \(-0.365088\pi\)
0.411263 + 0.911517i \(0.365088\pi\)
\(608\) −5.46341e9 −0.985828
\(609\) 0 0
\(610\) 8.45221e8 0.150770
\(611\) −1.33035e10 −2.35951
\(612\) 0 0
\(613\) 4.90735e9 0.860469 0.430234 0.902717i \(-0.358431\pi\)
0.430234 + 0.902717i \(0.358431\pi\)
\(614\) −1.83209e9 −0.319416
\(615\) 0 0
\(616\) 3.67136e9 0.632842
\(617\) −1.56563e9 −0.268344 −0.134172 0.990958i \(-0.542837\pi\)
−0.134172 + 0.990958i \(0.542837\pi\)
\(618\) 0 0
\(619\) −3.72881e9 −0.631906 −0.315953 0.948775i \(-0.602324\pi\)
−0.315953 + 0.948775i \(0.602324\pi\)
\(620\) 1.34472e9 0.226600
\(621\) 0 0
\(622\) −2.77848e9 −0.462957
\(623\) 2.60610e9 0.431800
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 2.46690e8 0.0401922
\(627\) 0 0
\(628\) −1.61643e9 −0.260434
\(629\) 2.10115e9 0.336650
\(630\) 0 0
\(631\) 7.08510e9 1.12265 0.561324 0.827596i \(-0.310292\pi\)
0.561324 + 0.827596i \(0.310292\pi\)
\(632\) 6.98669e9 1.10093
\(633\) 0 0
\(634\) 1.92677e9 0.300273
\(635\) 2.54911e9 0.395076
\(636\) 0 0
\(637\) 1.65138e9 0.253140
\(638\) 4.60100e9 0.701423
\(639\) 0 0
\(640\) 8.04630e8 0.121329
\(641\) −1.82759e9 −0.274079 −0.137039 0.990566i \(-0.543759\pi\)
−0.137039 + 0.990566i \(0.543759\pi\)
\(642\) 0 0
\(643\) 5.18343e9 0.768916 0.384458 0.923143i \(-0.374388\pi\)
0.384458 + 0.923143i \(0.374388\pi\)
\(644\) −3.50372e7 −0.00516926
\(645\) 0 0
\(646\) −7.87951e9 −1.14997
\(647\) −1.50002e9 −0.217736 −0.108868 0.994056i \(-0.534723\pi\)
−0.108868 + 0.994056i \(0.534723\pi\)
\(648\) 0 0
\(649\) 1.33492e10 1.91690
\(650\) −2.04139e9 −0.291560
\(651\) 0 0
\(652\) −1.50564e9 −0.212743
\(653\) −7.11169e9 −0.999486 −0.499743 0.866174i \(-0.666572\pi\)
−0.499743 + 0.866174i \(0.666572\pi\)
\(654\) 0 0
\(655\) 5.96984e8 0.0830076
\(656\) 4.07520e9 0.563619
\(657\) 0 0
\(658\) 3.02584e9 0.414053
\(659\) −1.25636e10 −1.71007 −0.855036 0.518568i \(-0.826465\pi\)
−0.855036 + 0.518568i \(0.826465\pi\)
\(660\) 0 0
\(661\) 2.01267e9 0.271061 0.135530 0.990773i \(-0.456726\pi\)
0.135530 + 0.990773i \(0.456726\pi\)
\(662\) 4.36586e9 0.584880
\(663\) 0 0
\(664\) −8.48301e9 −1.12451
\(665\) −2.04595e9 −0.269785
\(666\) 0 0
\(667\) −1.79780e8 −0.0234585
\(668\) −5.89912e8 −0.0765719
\(669\) 0 0
\(670\) 8.80472e8 0.113098
\(671\) 4.93262e9 0.630302
\(672\) 0 0
\(673\) −8.16453e9 −1.03247 −0.516236 0.856446i \(-0.672667\pi\)
−0.516236 + 0.856446i \(0.672667\pi\)
\(674\) −7.81651e8 −0.0983339
\(675\) 0 0
\(676\) −5.55437e9 −0.691547
\(677\) 1.73643e9 0.215079 0.107539 0.994201i \(-0.465703\pi\)
0.107539 + 0.994201i \(0.465703\pi\)
\(678\) 0 0
\(679\) −2.71643e9 −0.333007
\(680\) −3.49578e9 −0.426347
\(681\) 0 0
\(682\) −1.64358e10 −1.98402
\(683\) 4.08957e9 0.491140 0.245570 0.969379i \(-0.421025\pi\)
0.245570 + 0.969379i \(0.421025\pi\)
\(684\) 0 0
\(685\) −3.13255e9 −0.372375
\(686\) −3.75602e8 −0.0444215
\(687\) 0 0
\(688\) −5.62247e9 −0.658215
\(689\) 1.96603e10 2.28993
\(690\) 0 0
\(691\) −6.97574e9 −0.804298 −0.402149 0.915574i \(-0.631737\pi\)
−0.402149 + 0.915574i \(0.631737\pi\)
\(692\) 1.98676e9 0.227916
\(693\) 0 0
\(694\) 1.19230e10 1.35402
\(695\) 1.69798e9 0.191861
\(696\) 0 0
\(697\) −7.70898e9 −0.862348
\(698\) −1.59191e9 −0.177185
\(699\) 0 0
\(700\) −2.21693e8 −0.0244292
\(701\) 5.98140e9 0.655827 0.327914 0.944708i \(-0.393654\pi\)
0.327914 + 0.944708i \(0.393654\pi\)
\(702\) 0 0
\(703\) 5.65174e9 0.613534
\(704\) 1.53863e10 1.66200
\(705\) 0 0
\(706\) 9.20453e9 0.984430
\(707\) −3.74232e9 −0.398266
\(708\) 0 0
\(709\) 3.47164e9 0.365825 0.182912 0.983129i \(-0.441448\pi\)
0.182912 + 0.983129i \(0.441448\pi\)
\(710\) −1.75225e9 −0.183735
\(711\) 0 0
\(712\) 1.19775e10 1.24362
\(713\) 6.42214e8 0.0663539
\(714\) 0 0
\(715\) −1.19133e10 −1.21888
\(716\) 2.47059e9 0.251539
\(717\) 0 0
\(718\) 2.05280e9 0.206971
\(719\) 9.20843e9 0.923921 0.461960 0.886901i \(-0.347146\pi\)
0.461960 + 0.886901i \(0.347146\pi\)
\(720\) 0 0
\(721\) 4.41931e9 0.439117
\(722\) −1.28746e10 −1.27308
\(723\) 0 0
\(724\) −3.00667e9 −0.294443
\(725\) −1.13753e9 −0.110861
\(726\) 0 0
\(727\) −2.27106e9 −0.219209 −0.109605 0.993975i \(-0.534958\pi\)
−0.109605 + 0.993975i \(0.534958\pi\)
\(728\) 7.58969e9 0.729062
\(729\) 0 0
\(730\) −7.42688e9 −0.706605
\(731\) 1.06359e10 1.00708
\(732\) 0 0
\(733\) 1.15821e9 0.108623 0.0543116 0.998524i \(-0.482704\pi\)
0.0543116 + 0.998524i \(0.482704\pi\)
\(734\) −9.20778e9 −0.859447
\(735\) 0 0
\(736\) −2.82729e8 −0.0261396
\(737\) 5.13834e9 0.472810
\(738\) 0 0
\(739\) −2.29733e9 −0.209396 −0.104698 0.994504i \(-0.533388\pi\)
−0.104698 + 0.994504i \(0.533388\pi\)
\(740\) 6.12407e8 0.0555558
\(741\) 0 0
\(742\) −4.47166e9 −0.401842
\(743\) −2.57569e9 −0.230374 −0.115187 0.993344i \(-0.536747\pi\)
−0.115187 + 0.993344i \(0.536747\pi\)
\(744\) 0 0
\(745\) −3.71741e8 −0.0329377
\(746\) 1.28320e9 0.113164
\(747\) 0 0
\(748\) −4.98270e9 −0.435321
\(749\) 4.41146e8 0.0383615
\(750\) 0 0
\(751\) 3.45645e9 0.297777 0.148888 0.988854i \(-0.452430\pi\)
0.148888 + 0.988854i \(0.452430\pi\)
\(752\) 8.88838e9 0.762184
\(753\) 0 0
\(754\) 9.51150e9 0.808070
\(755\) −3.01388e9 −0.254866
\(756\) 0 0
\(757\) −1.23571e10 −1.03534 −0.517669 0.855581i \(-0.673200\pi\)
−0.517669 + 0.855581i \(0.673200\pi\)
\(758\) 7.73470e9 0.645062
\(759\) 0 0
\(760\) −9.40308e9 −0.777003
\(761\) −1.74837e10 −1.43810 −0.719048 0.694960i \(-0.755422\pi\)
−0.719048 + 0.694960i \(0.755422\pi\)
\(762\) 0 0
\(763\) −8.63094e9 −0.703433
\(764\) −2.96465e9 −0.240517
\(765\) 0 0
\(766\) −1.76208e10 −1.41652
\(767\) 2.75964e10 2.20835
\(768\) 0 0
\(769\) 1.28053e10 1.01542 0.507710 0.861528i \(-0.330492\pi\)
0.507710 + 0.861528i \(0.330492\pi\)
\(770\) 2.70965e9 0.213892
\(771\) 0 0
\(772\) −6.98660e9 −0.546519
\(773\) −5.44386e9 −0.423915 −0.211958 0.977279i \(-0.567984\pi\)
−0.211958 + 0.977279i \(0.567984\pi\)
\(774\) 0 0
\(775\) 4.06352e9 0.313579
\(776\) −1.24846e10 −0.959088
\(777\) 0 0
\(778\) −1.96813e10 −1.49839
\(779\) −2.07359e10 −1.57160
\(780\) 0 0
\(781\) −1.02259e10 −0.768113
\(782\) −4.07762e8 −0.0304918
\(783\) 0 0
\(784\) −1.10333e9 −0.0817707
\(785\) −4.88459e9 −0.360400
\(786\) 0 0
\(787\) 2.46027e10 1.79916 0.899581 0.436753i \(-0.143872\pi\)
0.899581 + 0.436753i \(0.143872\pi\)
\(788\) 5.91535e9 0.430664
\(789\) 0 0
\(790\) 5.15652e9 0.372102
\(791\) −9.90726e8 −0.0711764
\(792\) 0 0
\(793\) 1.01970e10 0.726136
\(794\) 1.83320e10 1.29968
\(795\) 0 0
\(796\) −2.20001e9 −0.154607
\(797\) 6.71494e9 0.469827 0.234914 0.972016i \(-0.424519\pi\)
0.234914 + 0.972016i \(0.424519\pi\)
\(798\) 0 0
\(799\) −1.68140e10 −1.16616
\(800\) −1.78893e9 −0.123532
\(801\) 0 0
\(802\) 1.97826e10 1.35417
\(803\) −4.33425e10 −2.95399
\(804\) 0 0
\(805\) −1.05877e8 −0.00715345
\(806\) −3.39772e10 −2.28568
\(807\) 0 0
\(808\) −1.71996e10 −1.14704
\(809\) 5.89951e9 0.391738 0.195869 0.980630i \(-0.437247\pi\)
0.195869 + 0.980630i \(0.437247\pi\)
\(810\) 0 0
\(811\) −9.53678e9 −0.627811 −0.313905 0.949454i \(-0.601637\pi\)
−0.313905 + 0.949454i \(0.601637\pi\)
\(812\) 1.03294e9 0.0677064
\(813\) 0 0
\(814\) −7.48516e9 −0.486425
\(815\) −4.54982e9 −0.294403
\(816\) 0 0
\(817\) 2.86089e10 1.83537
\(818\) 2.30610e10 1.47313
\(819\) 0 0
\(820\) −2.24689e9 −0.142309
\(821\) 1.72163e10 1.08577 0.542887 0.839806i \(-0.317331\pi\)
0.542887 + 0.839806i \(0.317331\pi\)
\(822\) 0 0
\(823\) −7.08048e9 −0.442755 −0.221377 0.975188i \(-0.571055\pi\)
−0.221377 + 0.975188i \(0.571055\pi\)
\(824\) 2.03110e10 1.26469
\(825\) 0 0
\(826\) −6.27671e9 −0.387527
\(827\) 2.54934e9 0.156732 0.0783660 0.996925i \(-0.475030\pi\)
0.0783660 + 0.996925i \(0.475030\pi\)
\(828\) 0 0
\(829\) −1.14560e10 −0.698378 −0.349189 0.937052i \(-0.613543\pi\)
−0.349189 + 0.937052i \(0.613543\pi\)
\(830\) −6.26088e9 −0.380069
\(831\) 0 0
\(832\) 3.18076e10 1.91470
\(833\) 2.08714e9 0.125111
\(834\) 0 0
\(835\) −1.78262e9 −0.105964
\(836\) −1.34026e10 −0.793357
\(837\) 0 0
\(838\) −1.92225e10 −1.12838
\(839\) −2.17022e10 −1.26864 −0.634319 0.773071i \(-0.718719\pi\)
−0.634319 + 0.773071i \(0.718719\pi\)
\(840\) 0 0
\(841\) −1.19497e10 −0.692743
\(842\) 2.44794e10 1.41321
\(843\) 0 0
\(844\) 1.36773e9 0.0783073
\(845\) −1.67845e10 −0.956993
\(846\) 0 0
\(847\) 9.12911e9 0.516222
\(848\) −1.31355e10 −0.739707
\(849\) 0 0
\(850\) −2.58006e9 −0.144100
\(851\) 2.92475e8 0.0162681
\(852\) 0 0
\(853\) −1.96358e10 −1.08324 −0.541622 0.840622i \(-0.682190\pi\)
−0.541622 + 0.840622i \(0.682190\pi\)
\(854\) −2.31929e9 −0.127424
\(855\) 0 0
\(856\) 2.02749e9 0.110484
\(857\) −1.17660e10 −0.638550 −0.319275 0.947662i \(-0.603439\pi\)
−0.319275 + 0.947662i \(0.603439\pi\)
\(858\) 0 0
\(859\) 9.94494e9 0.535335 0.267668 0.963511i \(-0.413747\pi\)
0.267668 + 0.963511i \(0.413747\pi\)
\(860\) 3.09998e9 0.166194
\(861\) 0 0
\(862\) 3.65502e9 0.194363
\(863\) 2.33995e10 1.23928 0.619640 0.784886i \(-0.287279\pi\)
0.619640 + 0.784886i \(0.287279\pi\)
\(864\) 0 0
\(865\) 6.00369e9 0.315400
\(866\) −2.60332e10 −1.36212
\(867\) 0 0
\(868\) −3.68990e9 −0.191512
\(869\) 3.00929e10 1.55559
\(870\) 0 0
\(871\) 1.06223e10 0.544698
\(872\) −3.96675e10 −2.02594
\(873\) 0 0
\(874\) −1.09681e9 −0.0555703
\(875\) −6.69922e8 −0.0338062
\(876\) 0 0
\(877\) −1.83836e10 −0.920306 −0.460153 0.887840i \(-0.652206\pi\)
−0.460153 + 0.887840i \(0.652206\pi\)
\(878\) −2.98642e9 −0.148909
\(879\) 0 0
\(880\) 7.95956e9 0.393731
\(881\) −1.42714e10 −0.703153 −0.351577 0.936159i \(-0.614354\pi\)
−0.351577 + 0.936159i \(0.614354\pi\)
\(882\) 0 0
\(883\) 8.73358e9 0.426904 0.213452 0.976954i \(-0.431529\pi\)
0.213452 + 0.976954i \(0.431529\pi\)
\(884\) −1.03006e10 −0.501509
\(885\) 0 0
\(886\) −1.70128e10 −0.821782
\(887\) 1.26531e10 0.608787 0.304394 0.952546i \(-0.401546\pi\)
0.304394 + 0.952546i \(0.401546\pi\)
\(888\) 0 0
\(889\) −6.99477e9 −0.333901
\(890\) 8.83999e9 0.420326
\(891\) 0 0
\(892\) −3.40158e8 −0.0160474
\(893\) −4.52269e10 −2.12528
\(894\) 0 0
\(895\) 7.46574e9 0.348091
\(896\) −2.20790e9 −0.102542
\(897\) 0 0
\(898\) −6.49920e8 −0.0299497
\(899\) −1.89333e10 −0.869095
\(900\) 0 0
\(901\) 2.48481e10 1.13177
\(902\) 2.74626e10 1.24600
\(903\) 0 0
\(904\) −4.55334e9 −0.204994
\(905\) −9.08569e9 −0.407463
\(906\) 0 0
\(907\) 1.32930e10 0.591558 0.295779 0.955256i \(-0.404421\pi\)
0.295779 + 0.955256i \(0.404421\pi\)
\(908\) 1.03272e10 0.457809
\(909\) 0 0
\(910\) 5.60157e9 0.246414
\(911\) −3.22600e10 −1.41368 −0.706839 0.707375i \(-0.749879\pi\)
−0.706839 + 0.707375i \(0.749879\pi\)
\(912\) 0 0
\(913\) −3.65378e10 −1.58889
\(914\) 6.56629e8 0.0284452
\(915\) 0 0
\(916\) 1.31270e10 0.564330
\(917\) −1.63812e9 −0.0701543
\(918\) 0 0
\(919\) 2.07823e9 0.0883262 0.0441631 0.999024i \(-0.485938\pi\)
0.0441631 + 0.999024i \(0.485938\pi\)
\(920\) −4.86606e8 −0.0206025
\(921\) 0 0
\(922\) −1.18246e10 −0.496851
\(923\) −2.11398e10 −0.884901
\(924\) 0 0
\(925\) 1.85060e9 0.0768805
\(926\) 1.40491e10 0.581445
\(927\) 0 0
\(928\) 8.33523e9 0.342373
\(929\) 2.99678e10 1.22631 0.613155 0.789962i \(-0.289900\pi\)
0.613155 + 0.789962i \(0.289900\pi\)
\(930\) 0 0
\(931\) 5.61407e9 0.228010
\(932\) 6.93156e9 0.280463
\(933\) 0 0
\(934\) −3.82107e10 −1.53452
\(935\) −1.50569e10 −0.602416
\(936\) 0 0
\(937\) −6.83304e9 −0.271347 −0.135674 0.990754i \(-0.543320\pi\)
−0.135674 + 0.990754i \(0.543320\pi\)
\(938\) −2.41601e9 −0.0955850
\(939\) 0 0
\(940\) −4.90066e9 −0.192445
\(941\) −1.47984e9 −0.0578962 −0.0289481 0.999581i \(-0.509216\pi\)
−0.0289481 + 0.999581i \(0.509216\pi\)
\(942\) 0 0
\(943\) −1.07308e9 −0.0416715
\(944\) −1.84378e10 −0.713355
\(945\) 0 0
\(946\) −3.78896e10 −1.45513
\(947\) 1.45643e10 0.557270 0.278635 0.960397i \(-0.410118\pi\)
0.278635 + 0.960397i \(0.410118\pi\)
\(948\) 0 0
\(949\) −8.96006e10 −3.40313
\(950\) −6.93993e9 −0.262617
\(951\) 0 0
\(952\) 9.59243e9 0.360329
\(953\) 7.86423e8 0.0294328 0.0147164 0.999892i \(-0.495315\pi\)
0.0147164 + 0.999892i \(0.495315\pi\)
\(954\) 0 0
\(955\) −8.95870e9 −0.332838
\(956\) −9.00702e9 −0.333410
\(957\) 0 0
\(958\) 3.16916e10 1.16457
\(959\) 8.59572e9 0.314715
\(960\) 0 0
\(961\) 4.01214e10 1.45829
\(962\) −1.54738e10 −0.560383
\(963\) 0 0
\(964\) 1.27871e10 0.459730
\(965\) −2.11124e10 −0.756297
\(966\) 0 0
\(967\) 1.60421e10 0.570516 0.285258 0.958451i \(-0.407921\pi\)
0.285258 + 0.958451i \(0.407921\pi\)
\(968\) 4.19570e10 1.48676
\(969\) 0 0
\(970\) −9.21424e9 −0.324159
\(971\) −1.32951e10 −0.466040 −0.233020 0.972472i \(-0.574861\pi\)
−0.233020 + 0.972472i \(0.574861\pi\)
\(972\) 0 0
\(973\) −4.65927e9 −0.162152
\(974\) −2.72869e10 −0.946232
\(975\) 0 0
\(976\) −6.81287e9 −0.234561
\(977\) −1.82382e10 −0.625679 −0.312839 0.949806i \(-0.601280\pi\)
−0.312839 + 0.949806i \(0.601280\pi\)
\(978\) 0 0
\(979\) 5.15892e10 1.75719
\(980\) 6.08326e8 0.0206464
\(981\) 0 0
\(982\) 1.43555e10 0.483758
\(983\) 1.40430e9 0.0471544 0.0235772 0.999722i \(-0.492494\pi\)
0.0235772 + 0.999722i \(0.492494\pi\)
\(984\) 0 0
\(985\) 1.78753e10 0.595971
\(986\) 1.20213e10 0.399378
\(987\) 0 0
\(988\) −2.77069e10 −0.913983
\(989\) 1.48050e9 0.0486656
\(990\) 0 0
\(991\) 4.54958e9 0.148495 0.0742477 0.997240i \(-0.476344\pi\)
0.0742477 + 0.997240i \(0.476344\pi\)
\(992\) −2.97753e10 −0.968424
\(993\) 0 0
\(994\) 4.80818e9 0.155284
\(995\) −6.64810e9 −0.213952
\(996\) 0 0
\(997\) −2.67218e10 −0.853950 −0.426975 0.904263i \(-0.640421\pi\)
−0.426975 + 0.904263i \(0.640421\pi\)
\(998\) −1.08551e10 −0.345682
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.g.1.2 4
3.2 odd 2 105.8.a.h.1.3 4
15.14 odd 2 525.8.a.i.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.h.1.3 4 3.2 odd 2
315.8.a.g.1.2 4 1.1 even 1 trivial
525.8.a.i.1.2 4 15.14 odd 2