Properties

Label 315.8.a.g.1.1
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(15.4362\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.0104 q^{2} +233.393 q^{4} -125.000 q^{5} +343.000 q^{7} -2003.57 q^{8} +2376.29 q^{10} -4502.83 q^{11} -4274.51 q^{13} -6520.55 q^{14} +8214.16 q^{16} -18401.1 q^{17} +18009.6 q^{19} -29174.2 q^{20} +85600.4 q^{22} -60066.0 q^{23} +15625.0 q^{25} +81260.0 q^{26} +80054.0 q^{28} -120639. q^{29} -69029.6 q^{31} +100303. q^{32} +349811. q^{34} -42875.0 q^{35} +145432. q^{37} -342368. q^{38} +250446. q^{40} -195031. q^{41} +497258. q^{43} -1.05093e6 q^{44} +1.14188e6 q^{46} +878940. q^{47} +117649. q^{49} -297037. q^{50} -997643. q^{52} -1.14353e6 q^{53} +562854. q^{55} -687224. q^{56} +2.29339e6 q^{58} +1.77473e6 q^{59} -3.05405e6 q^{61} +1.31228e6 q^{62} -2.95820e6 q^{64} +534314. q^{65} -2.33226e6 q^{67} -4.29470e6 q^{68} +815069. q^{70} +462659. q^{71} -2.30754e6 q^{73} -2.76471e6 q^{74} +4.20332e6 q^{76} -1.54447e6 q^{77} -6.33467e6 q^{79} -1.02677e6 q^{80} +3.70761e6 q^{82} -7.03050e6 q^{83} +2.30014e6 q^{85} -9.45305e6 q^{86} +9.02172e6 q^{88} -5.92781e6 q^{89} -1.46616e6 q^{91} -1.40190e7 q^{92} -1.67090e7 q^{94} -2.25120e6 q^{95} -4.28990e6 q^{97} -2.23655e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 11 q^{2} + 141 q^{4} - 500 q^{5} + 1372 q^{7} - 2133 q^{8} + 1375 q^{10} + 2708 q^{11} - 2212 q^{13} - 3773 q^{14} - 9599 q^{16} + 17016 q^{17} + 32668 q^{19} - 17625 q^{20} - 7196 q^{22} - 87696 q^{23}+ \cdots - 1294139 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −19.0104 −1.68029 −0.840147 0.542359i \(-0.817531\pi\)
−0.840147 + 0.542359i \(0.817531\pi\)
\(3\) 0 0
\(4\) 233.393 1.82339
\(5\) −125.000 −0.447214
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) −2003.57 −1.38353
\(9\) 0 0
\(10\) 2376.29 0.751450
\(11\) −4502.83 −1.02003 −0.510013 0.860167i \(-0.670359\pi\)
−0.510013 + 0.860167i \(0.670359\pi\)
\(12\) 0 0
\(13\) −4274.51 −0.539616 −0.269808 0.962914i \(-0.586960\pi\)
−0.269808 + 0.962914i \(0.586960\pi\)
\(14\) −6520.55 −0.635091
\(15\) 0 0
\(16\) 8214.16 0.501352
\(17\) −18401.1 −0.908390 −0.454195 0.890902i \(-0.650073\pi\)
−0.454195 + 0.890902i \(0.650073\pi\)
\(18\) 0 0
\(19\) 18009.6 0.602373 0.301187 0.953565i \(-0.402617\pi\)
0.301187 + 0.953565i \(0.402617\pi\)
\(20\) −29174.2 −0.815443
\(21\) 0 0
\(22\) 85600.4 1.71394
\(23\) −60066.0 −1.02939 −0.514697 0.857372i \(-0.672096\pi\)
−0.514697 + 0.857372i \(0.672096\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 81260.0 0.906713
\(27\) 0 0
\(28\) 80054.0 0.689175
\(29\) −120639. −0.918533 −0.459266 0.888299i \(-0.651888\pi\)
−0.459266 + 0.888299i \(0.651888\pi\)
\(30\) 0 0
\(31\) −69029.6 −0.416169 −0.208084 0.978111i \(-0.566723\pi\)
−0.208084 + 0.978111i \(0.566723\pi\)
\(32\) 100303. 0.541112
\(33\) 0 0
\(34\) 349811. 1.52636
\(35\) −42875.0 −0.169031
\(36\) 0 0
\(37\) 145432. 0.472013 0.236007 0.971751i \(-0.424161\pi\)
0.236007 + 0.971751i \(0.424161\pi\)
\(38\) −342368. −1.01216
\(39\) 0 0
\(40\) 250446. 0.618734
\(41\) −195031. −0.441937 −0.220969 0.975281i \(-0.570922\pi\)
−0.220969 + 0.975281i \(0.570922\pi\)
\(42\) 0 0
\(43\) 497258. 0.953767 0.476884 0.878966i \(-0.341766\pi\)
0.476884 + 0.878966i \(0.341766\pi\)
\(44\) −1.05093e6 −1.85990
\(45\) 0 0
\(46\) 1.14188e6 1.72968
\(47\) 878940. 1.23486 0.617428 0.786627i \(-0.288175\pi\)
0.617428 + 0.786627i \(0.288175\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) −297037. −0.336059
\(51\) 0 0
\(52\) −997643. −0.983929
\(53\) −1.14353e6 −1.05507 −0.527537 0.849532i \(-0.676884\pi\)
−0.527537 + 0.849532i \(0.676884\pi\)
\(54\) 0 0
\(55\) 562854. 0.456169
\(56\) −687224. −0.522926
\(57\) 0 0
\(58\) 2.29339e6 1.54341
\(59\) 1.77473e6 1.12499 0.562497 0.826799i \(-0.309841\pi\)
0.562497 + 0.826799i \(0.309841\pi\)
\(60\) 0 0
\(61\) −3.05405e6 −1.72275 −0.861374 0.507971i \(-0.830396\pi\)
−0.861374 + 0.507971i \(0.830396\pi\)
\(62\) 1.31228e6 0.699286
\(63\) 0 0
\(64\) −2.95820e6 −1.41058
\(65\) 534314. 0.241324
\(66\) 0 0
\(67\) −2.33226e6 −0.947360 −0.473680 0.880697i \(-0.657075\pi\)
−0.473680 + 0.880697i \(0.657075\pi\)
\(68\) −4.29470e6 −1.65635
\(69\) 0 0
\(70\) 815069. 0.284021
\(71\) 462659. 0.153411 0.0767056 0.997054i \(-0.475560\pi\)
0.0767056 + 0.997054i \(0.475560\pi\)
\(72\) 0 0
\(73\) −2.30754e6 −0.694255 −0.347128 0.937818i \(-0.612843\pi\)
−0.347128 + 0.937818i \(0.612843\pi\)
\(74\) −2.76471e6 −0.793121
\(75\) 0 0
\(76\) 4.20332e6 1.09836
\(77\) −1.54447e6 −0.385533
\(78\) 0 0
\(79\) −6.33467e6 −1.44554 −0.722769 0.691090i \(-0.757131\pi\)
−0.722769 + 0.691090i \(0.757131\pi\)
\(80\) −1.02677e6 −0.224212
\(81\) 0 0
\(82\) 3.70761e6 0.742585
\(83\) −7.03050e6 −1.34963 −0.674813 0.737989i \(-0.735776\pi\)
−0.674813 + 0.737989i \(0.735776\pi\)
\(84\) 0 0
\(85\) 2.30014e6 0.406244
\(86\) −9.45305e6 −1.60261
\(87\) 0 0
\(88\) 9.02172e6 1.41124
\(89\) −5.92781e6 −0.891312 −0.445656 0.895204i \(-0.647029\pi\)
−0.445656 + 0.895204i \(0.647029\pi\)
\(90\) 0 0
\(91\) −1.46616e6 −0.203956
\(92\) −1.40190e7 −1.87698
\(93\) 0 0
\(94\) −1.67090e7 −2.07492
\(95\) −2.25120e6 −0.269390
\(96\) 0 0
\(97\) −4.28990e6 −0.477251 −0.238625 0.971112i \(-0.576697\pi\)
−0.238625 + 0.971112i \(0.576697\pi\)
\(98\) −2.23655e6 −0.240042
\(99\) 0 0
\(100\) 3.64677e6 0.364677
\(101\) 1.29025e7 1.24609 0.623046 0.782185i \(-0.285895\pi\)
0.623046 + 0.782185i \(0.285895\pi\)
\(102\) 0 0
\(103\) −8.04379e6 −0.725321 −0.362660 0.931921i \(-0.618132\pi\)
−0.362660 + 0.931921i \(0.618132\pi\)
\(104\) 8.56427e6 0.746576
\(105\) 0 0
\(106\) 2.17389e7 1.77283
\(107\) 1.08308e7 0.854709 0.427354 0.904084i \(-0.359446\pi\)
0.427354 + 0.904084i \(0.359446\pi\)
\(108\) 0 0
\(109\) 3.03726e6 0.224641 0.112320 0.993672i \(-0.464172\pi\)
0.112320 + 0.993672i \(0.464172\pi\)
\(110\) −1.07000e7 −0.766498
\(111\) 0 0
\(112\) 2.81746e6 0.189493
\(113\) 9.37656e6 0.611321 0.305660 0.952141i \(-0.401123\pi\)
0.305660 + 0.952141i \(0.401123\pi\)
\(114\) 0 0
\(115\) 7.50825e6 0.460359
\(116\) −2.81564e7 −1.67484
\(117\) 0 0
\(118\) −3.37383e7 −1.89032
\(119\) −6.31158e6 −0.343339
\(120\) 0 0
\(121\) 788302. 0.0404524
\(122\) 5.80586e7 2.89472
\(123\) 0 0
\(124\) −1.61111e7 −0.758837
\(125\) −1.95312e6 −0.0894427
\(126\) 0 0
\(127\) 1.86143e7 0.806368 0.403184 0.915119i \(-0.367903\pi\)
0.403184 + 0.915119i \(0.367903\pi\)
\(128\) 4.33977e7 1.82908
\(129\) 0 0
\(130\) −1.01575e7 −0.405495
\(131\) −9.02536e6 −0.350764 −0.175382 0.984500i \(-0.556116\pi\)
−0.175382 + 0.984500i \(0.556116\pi\)
\(132\) 0 0
\(133\) 6.17728e6 0.227676
\(134\) 4.43371e7 1.59184
\(135\) 0 0
\(136\) 3.68678e7 1.25679
\(137\) 3.54149e7 1.17669 0.588347 0.808608i \(-0.299779\pi\)
0.588347 + 0.808608i \(0.299779\pi\)
\(138\) 0 0
\(139\) −4.05413e7 −1.28040 −0.640200 0.768208i \(-0.721149\pi\)
−0.640200 + 0.768208i \(0.721149\pi\)
\(140\) −1.00067e7 −0.308209
\(141\) 0 0
\(142\) −8.79531e6 −0.257776
\(143\) 1.92474e7 0.550422
\(144\) 0 0
\(145\) 1.50799e7 0.410780
\(146\) 4.38671e7 1.16655
\(147\) 0 0
\(148\) 3.39429e7 0.860662
\(149\) −4.26530e7 −1.05633 −0.528163 0.849143i \(-0.677119\pi\)
−0.528163 + 0.849143i \(0.677119\pi\)
\(150\) 0 0
\(151\) 7.75258e7 1.83243 0.916214 0.400690i \(-0.131230\pi\)
0.916214 + 0.400690i \(0.131230\pi\)
\(152\) −3.60834e7 −0.833402
\(153\) 0 0
\(154\) 2.93609e7 0.647809
\(155\) 8.62870e6 0.186116
\(156\) 0 0
\(157\) 1.80815e7 0.372895 0.186447 0.982465i \(-0.440303\pi\)
0.186447 + 0.982465i \(0.440303\pi\)
\(158\) 1.20424e8 2.42893
\(159\) 0 0
\(160\) −1.25378e7 −0.241993
\(161\) −2.06026e7 −0.389074
\(162\) 0 0
\(163\) 9.91147e7 1.79259 0.896296 0.443456i \(-0.146248\pi\)
0.896296 + 0.443456i \(0.146248\pi\)
\(164\) −4.55190e7 −0.805823
\(165\) 0 0
\(166\) 1.33652e8 2.26777
\(167\) 4.49506e7 0.746840 0.373420 0.927662i \(-0.378185\pi\)
0.373420 + 0.927662i \(0.378185\pi\)
\(168\) 0 0
\(169\) −4.44771e7 −0.708815
\(170\) −4.37264e7 −0.682610
\(171\) 0 0
\(172\) 1.16057e8 1.73909
\(173\) 9.32139e7 1.36873 0.684367 0.729138i \(-0.260079\pi\)
0.684367 + 0.729138i \(0.260079\pi\)
\(174\) 0 0
\(175\) 5.35938e6 0.0755929
\(176\) −3.69869e7 −0.511392
\(177\) 0 0
\(178\) 1.12690e8 1.49767
\(179\) 5.82961e7 0.759720 0.379860 0.925044i \(-0.375972\pi\)
0.379860 + 0.925044i \(0.375972\pi\)
\(180\) 0 0
\(181\) −9.20040e7 −1.15327 −0.576636 0.817001i \(-0.695635\pi\)
−0.576636 + 0.817001i \(0.695635\pi\)
\(182\) 2.78722e7 0.342705
\(183\) 0 0
\(184\) 1.20346e8 1.42420
\(185\) −1.81790e7 −0.211091
\(186\) 0 0
\(187\) 8.28570e7 0.926581
\(188\) 2.05139e8 2.25162
\(189\) 0 0
\(190\) 4.27960e7 0.452654
\(191\) −1.87816e8 −1.95037 −0.975184 0.221395i \(-0.928939\pi\)
−0.975184 + 0.221395i \(0.928939\pi\)
\(192\) 0 0
\(193\) −6.42221e6 −0.0643034 −0.0321517 0.999483i \(-0.510236\pi\)
−0.0321517 + 0.999483i \(0.510236\pi\)
\(194\) 8.15526e7 0.801921
\(195\) 0 0
\(196\) 2.74585e7 0.260484
\(197\) 1.14197e7 0.106420 0.0532102 0.998583i \(-0.483055\pi\)
0.0532102 + 0.998583i \(0.483055\pi\)
\(198\) 0 0
\(199\) 1.26893e8 1.14144 0.570719 0.821145i \(-0.306665\pi\)
0.570719 + 0.821145i \(0.306665\pi\)
\(200\) −3.13057e7 −0.276706
\(201\) 0 0
\(202\) −2.45282e8 −2.09380
\(203\) −4.13792e7 −0.347173
\(204\) 0 0
\(205\) 2.43789e7 0.197640
\(206\) 1.52915e8 1.21875
\(207\) 0 0
\(208\) −3.51115e7 −0.270538
\(209\) −8.10940e7 −0.614436
\(210\) 0 0
\(211\) −1.42587e8 −1.04494 −0.522470 0.852657i \(-0.674989\pi\)
−0.522470 + 0.852657i \(0.674989\pi\)
\(212\) −2.66893e8 −1.92381
\(213\) 0 0
\(214\) −2.05898e8 −1.43616
\(215\) −6.21573e7 −0.426538
\(216\) 0 0
\(217\) −2.36772e7 −0.157297
\(218\) −5.77393e7 −0.377463
\(219\) 0 0
\(220\) 1.31366e8 0.831773
\(221\) 7.86557e7 0.490182
\(222\) 0 0
\(223\) 2.12588e8 1.28373 0.641863 0.766819i \(-0.278162\pi\)
0.641863 + 0.766819i \(0.278162\pi\)
\(224\) 3.44038e7 0.204521
\(225\) 0 0
\(226\) −1.78252e8 −1.02720
\(227\) −8.22201e7 −0.466538 −0.233269 0.972412i \(-0.574942\pi\)
−0.233269 + 0.972412i \(0.574942\pi\)
\(228\) 0 0
\(229\) 1.95654e8 1.07663 0.538314 0.842745i \(-0.319062\pi\)
0.538314 + 0.842745i \(0.319062\pi\)
\(230\) −1.42735e8 −0.773538
\(231\) 0 0
\(232\) 2.41708e8 1.27082
\(233\) 2.59097e6 0.0134189 0.00670946 0.999977i \(-0.497864\pi\)
0.00670946 + 0.999977i \(0.497864\pi\)
\(234\) 0 0
\(235\) −1.09867e8 −0.552245
\(236\) 4.14211e8 2.05130
\(237\) 0 0
\(238\) 1.19985e8 0.576911
\(239\) −2.68850e8 −1.27385 −0.636924 0.770927i \(-0.719793\pi\)
−0.636924 + 0.770927i \(0.719793\pi\)
\(240\) 0 0
\(241\) −1.76419e8 −0.811867 −0.405933 0.913903i \(-0.633053\pi\)
−0.405933 + 0.913903i \(0.633053\pi\)
\(242\) −1.49859e7 −0.0679718
\(243\) 0 0
\(244\) −7.12796e8 −3.14124
\(245\) −1.47061e7 −0.0638877
\(246\) 0 0
\(247\) −7.69821e7 −0.325050
\(248\) 1.38305e8 0.575783
\(249\) 0 0
\(250\) 3.71296e7 0.150290
\(251\) 2.77871e8 1.10914 0.554569 0.832138i \(-0.312883\pi\)
0.554569 + 0.832138i \(0.312883\pi\)
\(252\) 0 0
\(253\) 2.70467e8 1.05001
\(254\) −3.53864e8 −1.35493
\(255\) 0 0
\(256\) −4.46356e8 −1.66280
\(257\) −1.92943e8 −0.709029 −0.354515 0.935050i \(-0.615354\pi\)
−0.354515 + 0.935050i \(0.615354\pi\)
\(258\) 0 0
\(259\) 4.98832e7 0.178404
\(260\) 1.24705e8 0.440026
\(261\) 0 0
\(262\) 1.71575e8 0.589386
\(263\) 3.57922e8 1.21323 0.606615 0.794995i \(-0.292527\pi\)
0.606615 + 0.794995i \(0.292527\pi\)
\(264\) 0 0
\(265\) 1.42941e8 0.471843
\(266\) −1.17432e8 −0.382562
\(267\) 0 0
\(268\) −5.44334e8 −1.72740
\(269\) 2.45154e8 0.767904 0.383952 0.923353i \(-0.374563\pi\)
0.383952 + 0.923353i \(0.374563\pi\)
\(270\) 0 0
\(271\) 3.89849e8 1.18988 0.594942 0.803769i \(-0.297175\pi\)
0.594942 + 0.803769i \(0.297175\pi\)
\(272\) −1.51149e8 −0.455423
\(273\) 0 0
\(274\) −6.73249e8 −1.97719
\(275\) −7.03567e7 −0.204005
\(276\) 0 0
\(277\) 5.23694e8 1.48047 0.740233 0.672351i \(-0.234715\pi\)
0.740233 + 0.672351i \(0.234715\pi\)
\(278\) 7.70704e8 2.15145
\(279\) 0 0
\(280\) 8.59030e7 0.233859
\(281\) 5.48100e8 1.47363 0.736813 0.676096i \(-0.236330\pi\)
0.736813 + 0.676096i \(0.236330\pi\)
\(282\) 0 0
\(283\) 5.31402e8 1.39370 0.696852 0.717214i \(-0.254583\pi\)
0.696852 + 0.717214i \(0.254583\pi\)
\(284\) 1.07982e8 0.279728
\(285\) 0 0
\(286\) −3.65900e8 −0.924871
\(287\) −6.68957e7 −0.167037
\(288\) 0 0
\(289\) −7.17384e7 −0.174827
\(290\) −2.86674e8 −0.690232
\(291\) 0 0
\(292\) −5.38565e8 −1.26590
\(293\) −5.12957e8 −1.19136 −0.595682 0.803220i \(-0.703118\pi\)
−0.595682 + 0.803220i \(0.703118\pi\)
\(294\) 0 0
\(295\) −2.21841e8 −0.503113
\(296\) −2.91383e8 −0.653045
\(297\) 0 0
\(298\) 8.10849e8 1.77494
\(299\) 2.56753e8 0.555477
\(300\) 0 0
\(301\) 1.70560e8 0.360490
\(302\) −1.47379e9 −3.07902
\(303\) 0 0
\(304\) 1.47933e8 0.302001
\(305\) 3.81756e8 0.770437
\(306\) 0 0
\(307\) 1.13872e8 0.224612 0.112306 0.993674i \(-0.464176\pi\)
0.112306 + 0.993674i \(0.464176\pi\)
\(308\) −3.60469e8 −0.702977
\(309\) 0 0
\(310\) −1.64035e8 −0.312730
\(311\) −4.08851e8 −0.770732 −0.385366 0.922764i \(-0.625925\pi\)
−0.385366 + 0.922764i \(0.625925\pi\)
\(312\) 0 0
\(313\) 3.16669e7 0.0583715 0.0291858 0.999574i \(-0.490709\pi\)
0.0291858 + 0.999574i \(0.490709\pi\)
\(314\) −3.43736e8 −0.626573
\(315\) 0 0
\(316\) −1.47847e9 −2.63577
\(317\) −8.69607e7 −0.153326 −0.0766630 0.997057i \(-0.524427\pi\)
−0.0766630 + 0.997057i \(0.524427\pi\)
\(318\) 0 0
\(319\) 5.43217e8 0.936927
\(320\) 3.69775e8 0.630831
\(321\) 0 0
\(322\) 3.91664e8 0.653759
\(323\) −3.31396e8 −0.547190
\(324\) 0 0
\(325\) −6.67893e7 −0.107923
\(326\) −1.88421e9 −3.01208
\(327\) 0 0
\(328\) 3.90758e8 0.611434
\(329\) 3.01476e8 0.466732
\(330\) 0 0
\(331\) −6.22774e8 −0.943913 −0.471957 0.881622i \(-0.656452\pi\)
−0.471957 + 0.881622i \(0.656452\pi\)
\(332\) −1.64087e9 −2.46089
\(333\) 0 0
\(334\) −8.54526e8 −1.25491
\(335\) 2.91533e8 0.423672
\(336\) 0 0
\(337\) −9.29789e7 −0.132336 −0.0661682 0.997808i \(-0.521077\pi\)
−0.0661682 + 0.997808i \(0.521077\pi\)
\(338\) 8.45525e8 1.19102
\(339\) 0 0
\(340\) 5.36837e8 0.740741
\(341\) 3.10829e8 0.424503
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) −9.96290e8 −1.31957
\(345\) 0 0
\(346\) −1.77203e9 −2.29988
\(347\) −2.89123e8 −0.371474 −0.185737 0.982599i \(-0.559467\pi\)
−0.185737 + 0.982599i \(0.559467\pi\)
\(348\) 0 0
\(349\) −1.14349e9 −1.43994 −0.719971 0.694005i \(-0.755845\pi\)
−0.719971 + 0.694005i \(0.755845\pi\)
\(350\) −1.01884e8 −0.127018
\(351\) 0 0
\(352\) −4.51646e8 −0.551948
\(353\) 1.43830e9 1.74036 0.870179 0.492736i \(-0.164003\pi\)
0.870179 + 0.492736i \(0.164003\pi\)
\(354\) 0 0
\(355\) −5.78324e7 −0.0686076
\(356\) −1.38351e9 −1.62521
\(357\) 0 0
\(358\) −1.10823e9 −1.27655
\(359\) 1.31227e9 1.49690 0.748451 0.663190i \(-0.230798\pi\)
0.748451 + 0.663190i \(0.230798\pi\)
\(360\) 0 0
\(361\) −5.69527e8 −0.637146
\(362\) 1.74903e9 1.93784
\(363\) 0 0
\(364\) −3.42192e8 −0.371890
\(365\) 2.88442e8 0.310480
\(366\) 0 0
\(367\) 6.60076e8 0.697048 0.348524 0.937300i \(-0.386683\pi\)
0.348524 + 0.937300i \(0.386683\pi\)
\(368\) −4.93392e8 −0.516089
\(369\) 0 0
\(370\) 3.45589e8 0.354694
\(371\) −3.92231e8 −0.398780
\(372\) 0 0
\(373\) −3.17296e8 −0.316580 −0.158290 0.987393i \(-0.550598\pi\)
−0.158290 + 0.987393i \(0.550598\pi\)
\(374\) −1.57514e9 −1.55693
\(375\) 0 0
\(376\) −1.76102e9 −1.70846
\(377\) 5.15673e8 0.495655
\(378\) 0 0
\(379\) −3.39230e8 −0.320078 −0.160039 0.987111i \(-0.551162\pi\)
−0.160039 + 0.987111i \(0.551162\pi\)
\(380\) −5.25415e8 −0.491201
\(381\) 0 0
\(382\) 3.57046e9 3.27719
\(383\) 7.33467e8 0.667091 0.333546 0.942734i \(-0.391755\pi\)
0.333546 + 0.942734i \(0.391755\pi\)
\(384\) 0 0
\(385\) 1.93059e8 0.172416
\(386\) 1.22089e8 0.108049
\(387\) 0 0
\(388\) −1.00124e9 −0.870212
\(389\) 1.92717e9 1.65996 0.829978 0.557796i \(-0.188353\pi\)
0.829978 + 0.557796i \(0.188353\pi\)
\(390\) 0 0
\(391\) 1.10528e9 0.935091
\(392\) −2.35718e8 −0.197647
\(393\) 0 0
\(394\) −2.17093e8 −0.178817
\(395\) 7.91834e8 0.646464
\(396\) 0 0
\(397\) 1.61772e8 0.129759 0.0648794 0.997893i \(-0.479334\pi\)
0.0648794 + 0.997893i \(0.479334\pi\)
\(398\) −2.41228e9 −1.91795
\(399\) 0 0
\(400\) 1.28346e8 0.100270
\(401\) −7.37769e8 −0.571367 −0.285683 0.958324i \(-0.592221\pi\)
−0.285683 + 0.958324i \(0.592221\pi\)
\(402\) 0 0
\(403\) 2.95068e8 0.224571
\(404\) 3.01137e9 2.27211
\(405\) 0 0
\(406\) 7.86633e8 0.583352
\(407\) −6.54856e8 −0.481465
\(408\) 0 0
\(409\) 2.25702e9 1.63119 0.815595 0.578623i \(-0.196410\pi\)
0.815595 + 0.578623i \(0.196410\pi\)
\(410\) −4.63452e8 −0.332094
\(411\) 0 0
\(412\) −1.87737e9 −1.32254
\(413\) 6.08733e8 0.425208
\(414\) 0 0
\(415\) 8.78813e8 0.603571
\(416\) −4.28745e8 −0.291993
\(417\) 0 0
\(418\) 1.54163e9 1.03243
\(419\) −9.19680e7 −0.0610784 −0.0305392 0.999534i \(-0.509722\pi\)
−0.0305392 + 0.999534i \(0.509722\pi\)
\(420\) 0 0
\(421\) −2.02409e9 −1.32203 −0.661015 0.750373i \(-0.729874\pi\)
−0.661015 + 0.750373i \(0.729874\pi\)
\(422\) 2.71063e9 1.75581
\(423\) 0 0
\(424\) 2.29114e9 1.45973
\(425\) −2.87517e8 −0.181678
\(426\) 0 0
\(427\) −1.04754e9 −0.651138
\(428\) 2.52784e9 1.55846
\(429\) 0 0
\(430\) 1.18163e9 0.716708
\(431\) 3.17852e9 1.91229 0.956146 0.292890i \(-0.0946168\pi\)
0.956146 + 0.292890i \(0.0946168\pi\)
\(432\) 0 0
\(433\) 1.76089e9 1.04238 0.521189 0.853442i \(-0.325489\pi\)
0.521189 + 0.853442i \(0.325489\pi\)
\(434\) 4.50111e8 0.264305
\(435\) 0 0
\(436\) 7.08876e8 0.409607
\(437\) −1.08176e9 −0.620079
\(438\) 0 0
\(439\) −2.44879e9 −1.38142 −0.690710 0.723132i \(-0.742702\pi\)
−0.690710 + 0.723132i \(0.742702\pi\)
\(440\) −1.12772e9 −0.631125
\(441\) 0 0
\(442\) −1.49527e9 −0.823649
\(443\) −2.38357e9 −1.30261 −0.651305 0.758816i \(-0.725778\pi\)
−0.651305 + 0.758816i \(0.725778\pi\)
\(444\) 0 0
\(445\) 7.40977e8 0.398607
\(446\) −4.04138e9 −2.15704
\(447\) 0 0
\(448\) −1.01466e9 −0.533149
\(449\) 3.69146e9 1.92458 0.962290 0.272024i \(-0.0876931\pi\)
0.962290 + 0.272024i \(0.0876931\pi\)
\(450\) 0 0
\(451\) 8.78193e8 0.450788
\(452\) 2.18843e9 1.11467
\(453\) 0 0
\(454\) 1.56303e9 0.783922
\(455\) 1.83270e8 0.0912118
\(456\) 0 0
\(457\) −2.03116e9 −0.995490 −0.497745 0.867323i \(-0.665839\pi\)
−0.497745 + 0.867323i \(0.665839\pi\)
\(458\) −3.71946e9 −1.80905
\(459\) 0 0
\(460\) 1.75238e9 0.839412
\(461\) −3.41432e9 −1.62312 −0.811560 0.584269i \(-0.801381\pi\)
−0.811560 + 0.584269i \(0.801381\pi\)
\(462\) 0 0
\(463\) 2.40382e9 1.12556 0.562779 0.826608i \(-0.309732\pi\)
0.562779 + 0.826608i \(0.309732\pi\)
\(464\) −9.90948e8 −0.460509
\(465\) 0 0
\(466\) −4.92553e7 −0.0225477
\(467\) 2.43203e9 1.10499 0.552496 0.833516i \(-0.313675\pi\)
0.552496 + 0.833516i \(0.313675\pi\)
\(468\) 0 0
\(469\) −7.99965e8 −0.358069
\(470\) 2.08862e9 0.927933
\(471\) 0 0
\(472\) −3.55579e9 −1.55647
\(473\) −2.23907e9 −0.972867
\(474\) 0 0
\(475\) 2.81400e8 0.120475
\(476\) −1.47308e9 −0.626040
\(477\) 0 0
\(478\) 5.11093e9 2.14044
\(479\) 3.57965e8 0.148822 0.0744109 0.997228i \(-0.476292\pi\)
0.0744109 + 0.997228i \(0.476292\pi\)
\(480\) 0 0
\(481\) −6.21651e8 −0.254706
\(482\) 3.35378e9 1.36417
\(483\) 0 0
\(484\) 1.83985e8 0.0737603
\(485\) 5.36238e8 0.213433
\(486\) 0 0
\(487\) −2.09507e9 −0.821952 −0.410976 0.911646i \(-0.634812\pi\)
−0.410976 + 0.911646i \(0.634812\pi\)
\(488\) 6.11900e9 2.38348
\(489\) 0 0
\(490\) 2.79569e8 0.107350
\(491\) 3.01356e9 1.14893 0.574467 0.818528i \(-0.305209\pi\)
0.574467 + 0.818528i \(0.305209\pi\)
\(492\) 0 0
\(493\) 2.21989e9 0.834386
\(494\) 1.46346e9 0.546180
\(495\) 0 0
\(496\) −5.67020e8 −0.208647
\(497\) 1.58692e8 0.0579840
\(498\) 0 0
\(499\) 3.82232e9 1.37713 0.688566 0.725174i \(-0.258241\pi\)
0.688566 + 0.725174i \(0.258241\pi\)
\(500\) −4.55847e8 −0.163089
\(501\) 0 0
\(502\) −5.28243e9 −1.86368
\(503\) 8.29703e8 0.290693 0.145347 0.989381i \(-0.453570\pi\)
0.145347 + 0.989381i \(0.453570\pi\)
\(504\) 0 0
\(505\) −1.61282e9 −0.557270
\(506\) −5.14167e9 −1.76432
\(507\) 0 0
\(508\) 4.34445e9 1.47032
\(509\) 4.75397e9 1.59788 0.798940 0.601411i \(-0.205394\pi\)
0.798940 + 0.601411i \(0.205394\pi\)
\(510\) 0 0
\(511\) −7.91486e8 −0.262404
\(512\) 2.93048e9 0.964925
\(513\) 0 0
\(514\) 3.66792e9 1.19138
\(515\) 1.00547e9 0.324373
\(516\) 0 0
\(517\) −3.95772e9 −1.25959
\(518\) −9.48297e8 −0.299771
\(519\) 0 0
\(520\) −1.07053e9 −0.333879
\(521\) −4.66521e9 −1.44524 −0.722619 0.691246i \(-0.757062\pi\)
−0.722619 + 0.691246i \(0.757062\pi\)
\(522\) 0 0
\(523\) 2.94800e9 0.901098 0.450549 0.892752i \(-0.351228\pi\)
0.450549 + 0.892752i \(0.351228\pi\)
\(524\) −2.10646e9 −0.639578
\(525\) 0 0
\(526\) −6.80423e9 −2.03858
\(527\) 1.27022e9 0.378044
\(528\) 0 0
\(529\) 2.03103e8 0.0596514
\(530\) −2.71737e9 −0.792835
\(531\) 0 0
\(532\) 1.44174e9 0.415141
\(533\) 8.33664e8 0.238477
\(534\) 0 0
\(535\) −1.35385e9 −0.382237
\(536\) 4.67284e9 1.31070
\(537\) 0 0
\(538\) −4.66047e9 −1.29030
\(539\) −5.29753e8 −0.145718
\(540\) 0 0
\(541\) 4.94883e9 1.34373 0.671865 0.740673i \(-0.265493\pi\)
0.671865 + 0.740673i \(0.265493\pi\)
\(542\) −7.41117e9 −1.99935
\(543\) 0 0
\(544\) −1.84568e9 −0.491541
\(545\) −3.79657e8 −0.100462
\(546\) 0 0
\(547\) 2.66452e9 0.696088 0.348044 0.937478i \(-0.386846\pi\)
0.348044 + 0.937478i \(0.386846\pi\)
\(548\) 8.26560e9 2.14557
\(549\) 0 0
\(550\) 1.33751e9 0.342789
\(551\) −2.17266e9 −0.553300
\(552\) 0 0
\(553\) −2.17279e9 −0.546362
\(554\) −9.95560e9 −2.48762
\(555\) 0 0
\(556\) −9.46207e9 −2.33466
\(557\) 2.24000e9 0.549230 0.274615 0.961554i \(-0.411450\pi\)
0.274615 + 0.961554i \(0.411450\pi\)
\(558\) 0 0
\(559\) −2.12554e9 −0.514668
\(560\) −3.52182e8 −0.0847440
\(561\) 0 0
\(562\) −1.04196e10 −2.47612
\(563\) −3.40259e9 −0.803582 −0.401791 0.915731i \(-0.631612\pi\)
−0.401791 + 0.915731i \(0.631612\pi\)
\(564\) 0 0
\(565\) −1.17207e9 −0.273391
\(566\) −1.01021e10 −2.34183
\(567\) 0 0
\(568\) −9.26969e8 −0.212249
\(569\) −4.63265e9 −1.05423 −0.527116 0.849793i \(-0.676727\pi\)
−0.527116 + 0.849793i \(0.676727\pi\)
\(570\) 0 0
\(571\) −2.60224e9 −0.584954 −0.292477 0.956273i \(-0.594479\pi\)
−0.292477 + 0.956273i \(0.594479\pi\)
\(572\) 4.49222e9 1.00363
\(573\) 0 0
\(574\) 1.27171e9 0.280671
\(575\) −9.38532e8 −0.205879
\(576\) 0 0
\(577\) 5.02957e8 0.108997 0.0544986 0.998514i \(-0.482644\pi\)
0.0544986 + 0.998514i \(0.482644\pi\)
\(578\) 1.36377e9 0.293761
\(579\) 0 0
\(580\) 3.51954e9 0.749012
\(581\) −2.41146e9 −0.510110
\(582\) 0 0
\(583\) 5.14913e9 1.07620
\(584\) 4.62331e9 0.960524
\(585\) 0 0
\(586\) 9.75150e9 2.00184
\(587\) 1.96930e9 0.401863 0.200932 0.979605i \(-0.435603\pi\)
0.200932 + 0.979605i \(0.435603\pi\)
\(588\) 0 0
\(589\) −1.24319e9 −0.250689
\(590\) 4.21728e9 0.845378
\(591\) 0 0
\(592\) 1.19460e9 0.236645
\(593\) −5.02109e9 −0.988797 −0.494398 0.869236i \(-0.664612\pi\)
−0.494398 + 0.869236i \(0.664612\pi\)
\(594\) 0 0
\(595\) 7.88947e8 0.153546
\(596\) −9.95494e9 −1.92609
\(597\) 0 0
\(598\) −4.88096e9 −0.933365
\(599\) 3.93975e9 0.748989 0.374494 0.927229i \(-0.377816\pi\)
0.374494 + 0.927229i \(0.377816\pi\)
\(600\) 0 0
\(601\) 2.82069e9 0.530024 0.265012 0.964245i \(-0.414624\pi\)
0.265012 + 0.964245i \(0.414624\pi\)
\(602\) −3.24240e9 −0.605729
\(603\) 0 0
\(604\) 1.80940e10 3.34122
\(605\) −9.85377e7 −0.0180908
\(606\) 0 0
\(607\) 1.08437e10 1.96796 0.983979 0.178287i \(-0.0570555\pi\)
0.983979 + 0.178287i \(0.0570555\pi\)
\(608\) 1.80641e9 0.325952
\(609\) 0 0
\(610\) −7.25733e9 −1.29456
\(611\) −3.75704e9 −0.666349
\(612\) 0 0
\(613\) 3.16454e9 0.554881 0.277440 0.960743i \(-0.410514\pi\)
0.277440 + 0.960743i \(0.410514\pi\)
\(614\) −2.16475e9 −0.377414
\(615\) 0 0
\(616\) 3.09445e9 0.533398
\(617\) −6.68640e9 −1.14603 −0.573013 0.819546i \(-0.694226\pi\)
−0.573013 + 0.819546i \(0.694226\pi\)
\(618\) 0 0
\(619\) −6.31362e9 −1.06994 −0.534972 0.844870i \(-0.679678\pi\)
−0.534972 + 0.844870i \(0.679678\pi\)
\(620\) 2.01388e9 0.339362
\(621\) 0 0
\(622\) 7.77240e9 1.29506
\(623\) −2.03324e9 −0.336884
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) −6.02000e8 −0.0980813
\(627\) 0 0
\(628\) 4.22011e9 0.679932
\(629\) −2.67611e9 −0.428772
\(630\) 0 0
\(631\) 5.96493e9 0.945154 0.472577 0.881289i \(-0.343324\pi\)
0.472577 + 0.881289i \(0.343324\pi\)
\(632\) 1.26919e10 1.99995
\(633\) 0 0
\(634\) 1.65315e9 0.257633
\(635\) −2.32678e9 −0.360619
\(636\) 0 0
\(637\) −5.02892e8 −0.0770880
\(638\) −1.03267e10 −1.57431
\(639\) 0 0
\(640\) −5.42471e9 −0.817988
\(641\) 7.69364e9 1.15379 0.576897 0.816817i \(-0.304263\pi\)
0.576897 + 0.816817i \(0.304263\pi\)
\(642\) 0 0
\(643\) 8.95380e9 1.32822 0.664109 0.747636i \(-0.268811\pi\)
0.664109 + 0.747636i \(0.268811\pi\)
\(644\) −4.80852e9 −0.709433
\(645\) 0 0
\(646\) 6.29995e9 0.919440
\(647\) −1.13171e10 −1.64275 −0.821376 0.570388i \(-0.806793\pi\)
−0.821376 + 0.570388i \(0.806793\pi\)
\(648\) 0 0
\(649\) −7.99131e9 −1.14752
\(650\) 1.26969e9 0.181343
\(651\) 0 0
\(652\) 2.31327e10 3.26859
\(653\) 3.31017e8 0.0465216 0.0232608 0.999729i \(-0.492595\pi\)
0.0232608 + 0.999729i \(0.492595\pi\)
\(654\) 0 0
\(655\) 1.12817e9 0.156866
\(656\) −1.60202e9 −0.221566
\(657\) 0 0
\(658\) −5.73117e9 −0.784247
\(659\) −7.69647e9 −1.04759 −0.523796 0.851844i \(-0.675485\pi\)
−0.523796 + 0.851844i \(0.675485\pi\)
\(660\) 0 0
\(661\) −9.01041e9 −1.21350 −0.606749 0.794893i \(-0.707527\pi\)
−0.606749 + 0.794893i \(0.707527\pi\)
\(662\) 1.18391e10 1.58605
\(663\) 0 0
\(664\) 1.40861e10 1.86725
\(665\) −7.72160e8 −0.101820
\(666\) 0 0
\(667\) 7.24631e9 0.945532
\(668\) 1.04912e10 1.36178
\(669\) 0 0
\(670\) −5.54214e9 −0.711894
\(671\) 1.37519e10 1.75725
\(672\) 0 0
\(673\) 5.44057e9 0.688005 0.344002 0.938969i \(-0.388217\pi\)
0.344002 + 0.938969i \(0.388217\pi\)
\(674\) 1.76756e9 0.222364
\(675\) 0 0
\(676\) −1.03807e10 −1.29244
\(677\) 4.22948e9 0.523873 0.261937 0.965085i \(-0.415639\pi\)
0.261937 + 0.965085i \(0.415639\pi\)
\(678\) 0 0
\(679\) −1.47144e9 −0.180384
\(680\) −4.60848e9 −0.562052
\(681\) 0 0
\(682\) −5.90896e9 −0.713289
\(683\) 3.23839e9 0.388917 0.194459 0.980911i \(-0.437705\pi\)
0.194459 + 0.980911i \(0.437705\pi\)
\(684\) 0 0
\(685\) −4.42686e9 −0.526234
\(686\) −7.67136e8 −0.0907273
\(687\) 0 0
\(688\) 4.08456e9 0.478173
\(689\) 4.88804e9 0.569334
\(690\) 0 0
\(691\) 2.28886e7 0.00263904 0.00131952 0.999999i \(-0.499580\pi\)
0.00131952 + 0.999999i \(0.499580\pi\)
\(692\) 2.17555e10 2.49573
\(693\) 0 0
\(694\) 5.49632e9 0.624186
\(695\) 5.06766e9 0.572612
\(696\) 0 0
\(697\) 3.58879e9 0.401452
\(698\) 2.17382e10 2.41952
\(699\) 0 0
\(700\) 1.25084e9 0.137835
\(701\) 9.45855e9 1.03708 0.518539 0.855054i \(-0.326476\pi\)
0.518539 + 0.855054i \(0.326476\pi\)
\(702\) 0 0
\(703\) 2.61917e9 0.284328
\(704\) 1.33203e10 1.43883
\(705\) 0 0
\(706\) −2.73426e10 −2.92431
\(707\) 4.42557e9 0.470979
\(708\) 0 0
\(709\) 3.82006e9 0.402539 0.201270 0.979536i \(-0.435493\pi\)
0.201270 + 0.979536i \(0.435493\pi\)
\(710\) 1.09941e9 0.115281
\(711\) 0 0
\(712\) 1.18768e10 1.23316
\(713\) 4.14634e9 0.428402
\(714\) 0 0
\(715\) −2.40592e9 −0.246156
\(716\) 1.36059e10 1.38526
\(717\) 0 0
\(718\) −2.49468e10 −2.51524
\(719\) −7.33673e9 −0.736125 −0.368062 0.929801i \(-0.619979\pi\)
−0.368062 + 0.929801i \(0.619979\pi\)
\(720\) 0 0
\(721\) −2.75902e9 −0.274146
\(722\) 1.08269e10 1.07059
\(723\) 0 0
\(724\) −2.14731e10 −2.10286
\(725\) −1.88498e9 −0.183707
\(726\) 0 0
\(727\) −1.82474e10 −1.76129 −0.880644 0.473778i \(-0.842890\pi\)
−0.880644 + 0.473778i \(0.842890\pi\)
\(728\) 2.93755e9 0.282179
\(729\) 0 0
\(730\) −5.48339e9 −0.521698
\(731\) −9.15010e9 −0.866393
\(732\) 0 0
\(733\) 1.15884e10 1.08682 0.543412 0.839466i \(-0.317132\pi\)
0.543412 + 0.839466i \(0.317132\pi\)
\(734\) −1.25483e10 −1.17125
\(735\) 0 0
\(736\) −6.02478e9 −0.557018
\(737\) 1.05018e10 0.966332
\(738\) 0 0
\(739\) 4.70724e9 0.429053 0.214527 0.976718i \(-0.431179\pi\)
0.214527 + 0.976718i \(0.431179\pi\)
\(740\) −4.24286e9 −0.384900
\(741\) 0 0
\(742\) 7.45646e9 0.670068
\(743\) −1.20000e10 −1.07330 −0.536648 0.843806i \(-0.680310\pi\)
−0.536648 + 0.843806i \(0.680310\pi\)
\(744\) 0 0
\(745\) 5.33163e9 0.472403
\(746\) 6.03191e9 0.531947
\(747\) 0 0
\(748\) 1.93383e10 1.68952
\(749\) 3.71497e9 0.323050
\(750\) 0 0
\(751\) 8.66014e9 0.746080 0.373040 0.927815i \(-0.378315\pi\)
0.373040 + 0.927815i \(0.378315\pi\)
\(752\) 7.21975e9 0.619098
\(753\) 0 0
\(754\) −9.80312e9 −0.832846
\(755\) −9.69072e9 −0.819486
\(756\) 0 0
\(757\) −9.64571e9 −0.808163 −0.404081 0.914723i \(-0.632409\pi\)
−0.404081 + 0.914723i \(0.632409\pi\)
\(758\) 6.44887e9 0.537826
\(759\) 0 0
\(760\) 4.51042e9 0.372709
\(761\) 9.41824e9 0.774682 0.387341 0.921937i \(-0.373394\pi\)
0.387341 + 0.921937i \(0.373394\pi\)
\(762\) 0 0
\(763\) 1.04178e9 0.0849063
\(764\) −4.38351e10 −3.55628
\(765\) 0 0
\(766\) −1.39435e10 −1.12091
\(767\) −7.58611e9 −0.607065
\(768\) 0 0
\(769\) −7.36510e9 −0.584032 −0.292016 0.956414i \(-0.594326\pi\)
−0.292016 + 0.956414i \(0.594326\pi\)
\(770\) −3.67012e9 −0.289709
\(771\) 0 0
\(772\) −1.49890e9 −0.117250
\(773\) −1.33080e10 −1.03630 −0.518150 0.855290i \(-0.673379\pi\)
−0.518150 + 0.855290i \(0.673379\pi\)
\(774\) 0 0
\(775\) −1.07859e9 −0.0832338
\(776\) 8.59511e9 0.660291
\(777\) 0 0
\(778\) −3.66362e10 −2.78921
\(779\) −3.51243e9 −0.266211
\(780\) 0 0
\(781\) −2.08328e9 −0.156483
\(782\) −2.10118e10 −1.57123
\(783\) 0 0
\(784\) 9.66387e8 0.0716218
\(785\) −2.26019e9 −0.166764
\(786\) 0 0
\(787\) 7.47085e9 0.546334 0.273167 0.961967i \(-0.411929\pi\)
0.273167 + 0.961967i \(0.411929\pi\)
\(788\) 2.66530e9 0.194045
\(789\) 0 0
\(790\) −1.50530e10 −1.08625
\(791\) 3.21616e9 0.231058
\(792\) 0 0
\(793\) 1.30546e10 0.929623
\(794\) −3.07534e9 −0.218033
\(795\) 0 0
\(796\) 2.96160e10 2.08128
\(797\) 1.26160e10 0.882706 0.441353 0.897333i \(-0.354499\pi\)
0.441353 + 0.897333i \(0.354499\pi\)
\(798\) 0 0
\(799\) −1.61735e10 −1.12173
\(800\) 1.56723e9 0.108222
\(801\) 0 0
\(802\) 1.40252e10 0.960064
\(803\) 1.03905e10 0.708158
\(804\) 0 0
\(805\) 2.57533e9 0.173999
\(806\) −5.60935e9 −0.377346
\(807\) 0 0
\(808\) −2.58511e10 −1.72401
\(809\) 1.66973e10 1.10873 0.554367 0.832272i \(-0.312960\pi\)
0.554367 + 0.832272i \(0.312960\pi\)
\(810\) 0 0
\(811\) 1.32145e10 0.869915 0.434957 0.900451i \(-0.356763\pi\)
0.434957 + 0.900451i \(0.356763\pi\)
\(812\) −9.65763e9 −0.633030
\(813\) 0 0
\(814\) 1.24490e10 0.809003
\(815\) −1.23893e10 −0.801672
\(816\) 0 0
\(817\) 8.95541e9 0.574524
\(818\) −4.29068e10 −2.74088
\(819\) 0 0
\(820\) 5.68988e9 0.360375
\(821\) −1.98844e10 −1.25404 −0.627020 0.779003i \(-0.715726\pi\)
−0.627020 + 0.779003i \(0.715726\pi\)
\(822\) 0 0
\(823\) −2.59040e10 −1.61982 −0.809910 0.586554i \(-0.800484\pi\)
−0.809910 + 0.586554i \(0.800484\pi\)
\(824\) 1.61163e10 1.00350
\(825\) 0 0
\(826\) −1.15722e10 −0.714474
\(827\) 1.41678e10 0.871027 0.435514 0.900182i \(-0.356567\pi\)
0.435514 + 0.900182i \(0.356567\pi\)
\(828\) 0 0
\(829\) 1.00028e10 0.609791 0.304895 0.952386i \(-0.401378\pi\)
0.304895 + 0.952386i \(0.401378\pi\)
\(830\) −1.67065e10 −1.01418
\(831\) 0 0
\(832\) 1.26449e10 0.761171
\(833\) −2.16487e9 −0.129770
\(834\) 0 0
\(835\) −5.61882e9 −0.333997
\(836\) −1.89268e10 −1.12035
\(837\) 0 0
\(838\) 1.74834e9 0.102630
\(839\) −7.40779e9 −0.433034 −0.216517 0.976279i \(-0.569470\pi\)
−0.216517 + 0.976279i \(0.569470\pi\)
\(840\) 0 0
\(841\) −2.69611e9 −0.156297
\(842\) 3.84786e10 2.22140
\(843\) 0 0
\(844\) −3.32789e10 −1.90533
\(845\) 5.55963e9 0.316992
\(846\) 0 0
\(847\) 2.70388e8 0.0152896
\(848\) −9.39315e9 −0.528963
\(849\) 0 0
\(850\) 5.46580e9 0.305272
\(851\) −8.73552e9 −0.485887
\(852\) 0 0
\(853\) −1.30062e10 −0.717511 −0.358755 0.933432i \(-0.616799\pi\)
−0.358755 + 0.933432i \(0.616799\pi\)
\(854\) 1.99141e10 1.09410
\(855\) 0 0
\(856\) −2.17003e10 −1.18252
\(857\) −1.39742e10 −0.758394 −0.379197 0.925316i \(-0.623800\pi\)
−0.379197 + 0.925316i \(0.623800\pi\)
\(858\) 0 0
\(859\) 1.39136e10 0.748967 0.374484 0.927234i \(-0.377820\pi\)
0.374484 + 0.927234i \(0.377820\pi\)
\(860\) −1.45071e10 −0.777743
\(861\) 0 0
\(862\) −6.04248e10 −3.21321
\(863\) −3.55415e10 −1.88234 −0.941169 0.337937i \(-0.890271\pi\)
−0.941169 + 0.337937i \(0.890271\pi\)
\(864\) 0 0
\(865\) −1.16517e10 −0.612117
\(866\) −3.34752e10 −1.75150
\(867\) 0 0
\(868\) −5.52609e9 −0.286813
\(869\) 2.85240e10 1.47449
\(870\) 0 0
\(871\) 9.96927e9 0.511211
\(872\) −6.08535e9 −0.310798
\(873\) 0 0
\(874\) 2.05647e10 1.04192
\(875\) −6.69922e8 −0.0338062
\(876\) 0 0
\(877\) −2.17698e10 −1.08982 −0.544911 0.838494i \(-0.683437\pi\)
−0.544911 + 0.838494i \(0.683437\pi\)
\(878\) 4.65524e10 2.32119
\(879\) 0 0
\(880\) 4.62337e9 0.228702
\(881\) 5.94782e9 0.293050 0.146525 0.989207i \(-0.453191\pi\)
0.146525 + 0.989207i \(0.453191\pi\)
\(882\) 0 0
\(883\) −1.67373e10 −0.818130 −0.409065 0.912505i \(-0.634145\pi\)
−0.409065 + 0.912505i \(0.634145\pi\)
\(884\) 1.83577e10 0.893791
\(885\) 0 0
\(886\) 4.53124e10 2.18877
\(887\) −3.58618e10 −1.72544 −0.862720 0.505682i \(-0.831241\pi\)
−0.862720 + 0.505682i \(0.831241\pi\)
\(888\) 0 0
\(889\) 6.38470e9 0.304778
\(890\) −1.40862e10 −0.669776
\(891\) 0 0
\(892\) 4.96168e10 2.34073
\(893\) 1.58293e10 0.743845
\(894\) 0 0
\(895\) −7.28701e9 −0.339757
\(896\) 1.48854e10 0.691326
\(897\) 0 0
\(898\) −7.01760e10 −3.23386
\(899\) 8.32766e9 0.382265
\(900\) 0 0
\(901\) 2.10422e10 0.958418
\(902\) −1.66948e10 −0.757455
\(903\) 0 0
\(904\) −1.87866e10 −0.845781
\(905\) 1.15005e10 0.515759
\(906\) 0 0
\(907\) −1.57578e9 −0.0701247 −0.0350623 0.999385i \(-0.511163\pi\)
−0.0350623 + 0.999385i \(0.511163\pi\)
\(908\) −1.91896e10 −0.850680
\(909\) 0 0
\(910\) −3.48402e9 −0.153263
\(911\) −2.34451e10 −1.02740 −0.513699 0.857971i \(-0.671725\pi\)
−0.513699 + 0.857971i \(0.671725\pi\)
\(912\) 0 0
\(913\) 3.16572e10 1.37665
\(914\) 3.86130e10 1.67272
\(915\) 0 0
\(916\) 4.56645e10 1.96311
\(917\) −3.09570e9 −0.132576
\(918\) 0 0
\(919\) 3.95547e10 1.68110 0.840551 0.541732i \(-0.182231\pi\)
0.840551 + 0.541732i \(0.182231\pi\)
\(920\) −1.50433e10 −0.636921
\(921\) 0 0
\(922\) 6.49074e10 2.72732
\(923\) −1.97764e9 −0.0827831
\(924\) 0 0
\(925\) 2.27238e9 0.0944026
\(926\) −4.56974e10 −1.89127
\(927\) 0 0
\(928\) −1.21004e10 −0.497030
\(929\) −1.81939e10 −0.744512 −0.372256 0.928130i \(-0.621416\pi\)
−0.372256 + 0.928130i \(0.621416\pi\)
\(930\) 0 0
\(931\) 2.11881e9 0.0860533
\(932\) 6.04717e8 0.0244679
\(933\) 0 0
\(934\) −4.62337e10 −1.85671
\(935\) −1.03571e10 −0.414380
\(936\) 0 0
\(937\) −4.78803e8 −0.0190138 −0.00950688 0.999955i \(-0.503026\pi\)
−0.00950688 + 0.999955i \(0.503026\pi\)
\(938\) 1.52076e10 0.601660
\(939\) 0 0
\(940\) −2.56424e10 −1.00696
\(941\) −2.86712e10 −1.12171 −0.560857 0.827912i \(-0.689528\pi\)
−0.560857 + 0.827912i \(0.689528\pi\)
\(942\) 0 0
\(943\) 1.17148e10 0.454928
\(944\) 1.45779e10 0.564019
\(945\) 0 0
\(946\) 4.25655e10 1.63470
\(947\) −8.72415e9 −0.333809 −0.166905 0.985973i \(-0.553377\pi\)
−0.166905 + 0.985973i \(0.553377\pi\)
\(948\) 0 0
\(949\) 9.86360e9 0.374631
\(950\) −5.34950e9 −0.202433
\(951\) 0 0
\(952\) 1.26457e10 0.475021
\(953\) −9.64039e9 −0.360802 −0.180401 0.983593i \(-0.557740\pi\)
−0.180401 + 0.983593i \(0.557740\pi\)
\(954\) 0 0
\(955\) 2.34770e10 0.872231
\(956\) −6.27478e10 −2.32272
\(957\) 0 0
\(958\) −6.80504e9 −0.250064
\(959\) 1.21473e10 0.444749
\(960\) 0 0
\(961\) −2.27475e10 −0.826804
\(962\) 1.18178e10 0.427981
\(963\) 0 0
\(964\) −4.11750e10 −1.48035
\(965\) 8.02777e8 0.0287574
\(966\) 0 0
\(967\) −2.56468e10 −0.912094 −0.456047 0.889956i \(-0.650735\pi\)
−0.456047 + 0.889956i \(0.650735\pi\)
\(968\) −1.57942e9 −0.0559671
\(969\) 0 0
\(970\) −1.01941e10 −0.358630
\(971\) 3.19514e10 1.12001 0.560007 0.828488i \(-0.310799\pi\)
0.560007 + 0.828488i \(0.310799\pi\)
\(972\) 0 0
\(973\) −1.39057e10 −0.483946
\(974\) 3.98279e10 1.38112
\(975\) 0 0
\(976\) −2.50865e10 −0.863704
\(977\) 4.30520e10 1.47694 0.738470 0.674287i \(-0.235549\pi\)
0.738470 + 0.674287i \(0.235549\pi\)
\(978\) 0 0
\(979\) 2.66919e10 0.909161
\(980\) −3.43231e9 −0.116492
\(981\) 0 0
\(982\) −5.72889e10 −1.93055
\(983\) 5.12333e10 1.72034 0.860171 0.510006i \(-0.170357\pi\)
0.860171 + 0.510006i \(0.170357\pi\)
\(984\) 0 0
\(985\) −1.42747e9 −0.0475926
\(986\) −4.22009e10 −1.40201
\(987\) 0 0
\(988\) −1.79671e10 −0.592692
\(989\) −2.98683e10 −0.981802
\(990\) 0 0
\(991\) 2.98088e10 0.972940 0.486470 0.873697i \(-0.338284\pi\)
0.486470 + 0.873697i \(0.338284\pi\)
\(992\) −6.92385e9 −0.225194
\(993\) 0 0
\(994\) −3.01679e9 −0.0974301
\(995\) −1.58616e10 −0.510467
\(996\) 0 0
\(997\) −6.10695e9 −0.195160 −0.0975801 0.995228i \(-0.531110\pi\)
−0.0975801 + 0.995228i \(0.531110\pi\)
\(998\) −7.26637e10 −2.31399
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.g.1.1 4
3.2 odd 2 105.8.a.h.1.4 4
15.14 odd 2 525.8.a.i.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.h.1.4 4 3.2 odd 2
315.8.a.g.1.1 4 1.1 even 1 trivial
525.8.a.i.1.1 4 15.14 odd 2