Properties

Label 315.8.a.g
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 3) q^{2} + (\beta_{2} + 5 \beta_1 + 36) q^{4} - 125 q^{5} + 343 q^{7} + ( - 2 \beta_{3} - 7 \beta_{2} + \cdots - 530) q^{8} + (125 \beta_1 + 375) q^{10} + ( - 3 \beta_{3} - 37 \beta_{2} + \cdots + 697) q^{11}+ \cdots + ( - 117649 \beta_1 - 352947) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 11 q^{2} + 141 q^{4} - 500 q^{5} + 1372 q^{7} - 2133 q^{8} + 1375 q^{10} + 2708 q^{11} - 2212 q^{13} - 3773 q^{14} - 9599 q^{16} + 17016 q^{17} + 32668 q^{19} - 17625 q^{20} - 7196 q^{22} - 87696 q^{23}+ \cdots - 1294139 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 157\nu - 294 ) / 60 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 457\nu + 144 ) / 30 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -11\nu^{3} + 200\nu^{2} + 1527\nu - 24726 ) / 20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 5 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 35\beta _1 + 1403 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 157\beta_{2} + 914\beta _1 + 3725 ) / 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
15.4362
−9.12888
−12.8099
8.50252
−19.0104 0 233.393 −125.000 0 343.000 −2003.57 0 2376.29
1.2 −9.30777 0 −41.3655 −125.000 0 343.000 1576.41 0 1163.47
1.3 3.41438 0 −116.342 −125.000 0 343.000 −834.277 0 −426.798
1.4 13.9037 0 65.3140 −125.000 0 343.000 −871.570 0 −1737.97
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.g 4
3.b odd 2 1 105.8.a.h 4
15.d odd 2 1 525.8.a.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.8.a.h 4 3.b odd 2 1
315.8.a.g 4 1.a even 1 1 trivial
525.8.a.i 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 11T_{2}^{3} - 266T_{2}^{2} - 1720T_{2} + 8400 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 11 T^{3} + \cdots + 8400 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T + 125)^{4} \) Copy content Toggle raw display
$7$ \( (T - 343)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 305716605493824 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 27\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 65\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 62\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 25\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 29\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 46\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 35\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 18\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 48\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 33\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 56\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 23\!\cdots\!44 \) Copy content Toggle raw display
show more
show less