Properties

Label 315.8.a.e
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2268428.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 220x - 1044 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 8) q^{2} + (\beta_{2} - 8 \beta_1 + 80) q^{4} + 125 q^{5} + 343 q^{7} + (23 \beta_{2} + 28 \beta_1 + 732) q^{8} + ( - 125 \beta_1 + 1000) q^{10} + (7 \beta_{2} + 240 \beta_1 - 1035) q^{11}+ \cdots + ( - 117649 \beta_1 + 941192) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 23 q^{2} + 233 q^{4} + 375 q^{5} + 1029 q^{7} + 2247 q^{8} + 2875 q^{10} - 2858 q^{11} - 15852 q^{13} + 7889 q^{14} - 27711 q^{16} - 1464 q^{17} - 90364 q^{19} + 29125 q^{20} - 128516 q^{22} - 63372 q^{23}+ \cdots + 2705927 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 220x - 1044 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 8\nu - 144 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 8\beta _1 + 144 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.2557
−5.76993
−10.4857
−9.25565 0 −42.3329 125.000 0 343.000 1576.54 0 −1156.96
1.2 13.7699 0 61.6111 125.000 0 343.000 −914.171 0 1721.24
1.3 18.4857 0 213.722 125.000 0 343.000 1584.63 0 2310.71
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.e 3
3.b odd 2 1 35.8.a.b 3
12.b even 2 1 560.8.a.l 3
15.d odd 2 1 175.8.a.d 3
15.e even 4 2 175.8.b.d 6
21.c even 2 1 245.8.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.8.a.b 3 3.b odd 2 1
175.8.a.d 3 15.d odd 2 1
175.8.b.d 6 15.e even 4 2
245.8.a.d 3 21.c even 2 1
315.8.a.e 3 1.a even 1 1 trivial
560.8.a.l 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 23T_{2}^{2} - 44T_{2} + 2356 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 23 T^{2} + \cdots + 2356 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 125)^{3} \) Copy content Toggle raw display
$7$ \( (T - 343)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 29580723108 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 34923826434 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 7982186169358 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 17372875013920 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 59835445324672 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 18641073090050 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 136675040377600 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 13\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 10\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 10\!\cdots\!32 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 15\!\cdots\!48 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 48\!\cdots\!60 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 20\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 17\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 16\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 83\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 56\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 15\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 57\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 34\!\cdots\!06 \) Copy content Toggle raw display
show more
show less