Properties

Label 315.8.a.b.1.1
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -124.000 q^{4} +125.000 q^{5} +343.000 q^{7} -504.000 q^{8} +O(q^{10})\) \(q+2.00000 q^{2} -124.000 q^{4} +125.000 q^{5} +343.000 q^{7} -504.000 q^{8} +250.000 q^{10} -2724.00 q^{11} +2874.00 q^{13} +686.000 q^{14} +14864.0 q^{16} -9278.00 q^{17} -4304.00 q^{19} -15500.0 q^{20} -5448.00 q^{22} +41500.0 q^{23} +15625.0 q^{25} +5748.00 q^{26} -42532.0 q^{28} +35498.0 q^{29} -52940.0 q^{31} +94240.0 q^{32} -18556.0 q^{34} +42875.0 q^{35} -84098.0 q^{37} -8608.00 q^{38} -63000.0 q^{40} -180342. q^{41} -33452.0 q^{43} +337776. q^{44} +83000.0 q^{46} +136120. q^{47} +117649. q^{49} +31250.0 q^{50} -356376. q^{52} +1.27062e6 q^{53} -340500. q^{55} -172872. q^{56} +70996.0 q^{58} +1.55325e6 q^{59} +213598. q^{61} -105880. q^{62} -1.71411e6 q^{64} +359250. q^{65} +487228. q^{67} +1.15047e6 q^{68} +85750.0 q^{70} -1.08600e6 q^{71} -5.92198e6 q^{73} -168196. q^{74} +533696. q^{76} -934332. q^{77} -5.42982e6 q^{79} +1.85800e6 q^{80} -360684. q^{82} -6.93340e6 q^{83} -1.15975e6 q^{85} -66904.0 q^{86} +1.37290e6 q^{88} -262614. q^{89} +985782. q^{91} -5.14600e6 q^{92} +272240. q^{94} -538000. q^{95} -522234. q^{97} +235298. q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.176777 0.0883883 0.996086i \(-0.471828\pi\)
0.0883883 + 0.996086i \(0.471828\pi\)
\(3\) 0 0
\(4\) −124.000 −0.968750
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) −504.000 −0.348029
\(9\) 0 0
\(10\) 250.000 0.0790569
\(11\) −2724.00 −0.617068 −0.308534 0.951213i \(-0.599838\pi\)
−0.308534 + 0.951213i \(0.599838\pi\)
\(12\) 0 0
\(13\) 2874.00 0.362815 0.181407 0.983408i \(-0.441935\pi\)
0.181407 + 0.983408i \(0.441935\pi\)
\(14\) 686.000 0.0668153
\(15\) 0 0
\(16\) 14864.0 0.907227
\(17\) −9278.00 −0.458019 −0.229009 0.973424i \(-0.573549\pi\)
−0.229009 + 0.973424i \(0.573549\pi\)
\(18\) 0 0
\(19\) −4304.00 −0.143958 −0.0719788 0.997406i \(-0.522931\pi\)
−0.0719788 + 0.997406i \(0.522931\pi\)
\(20\) −15500.0 −0.433238
\(21\) 0 0
\(22\) −5448.00 −0.109083
\(23\) 41500.0 0.711215 0.355607 0.934635i \(-0.384274\pi\)
0.355607 + 0.934635i \(0.384274\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 5748.00 0.0641372
\(27\) 0 0
\(28\) −42532.0 −0.366153
\(29\) 35498.0 0.270278 0.135139 0.990827i \(-0.456852\pi\)
0.135139 + 0.990827i \(0.456852\pi\)
\(30\) 0 0
\(31\) −52940.0 −0.319167 −0.159584 0.987184i \(-0.551015\pi\)
−0.159584 + 0.987184i \(0.551015\pi\)
\(32\) 94240.0 0.508406
\(33\) 0 0
\(34\) −18556.0 −0.0809670
\(35\) 42875.0 0.169031
\(36\) 0 0
\(37\) −84098.0 −0.272948 −0.136474 0.990644i \(-0.543577\pi\)
−0.136474 + 0.990644i \(0.543577\pi\)
\(38\) −8608.00 −0.0254484
\(39\) 0 0
\(40\) −63000.0 −0.155643
\(41\) −180342. −0.408652 −0.204326 0.978903i \(-0.565500\pi\)
−0.204326 + 0.978903i \(0.565500\pi\)
\(42\) 0 0
\(43\) −33452.0 −0.0641627 −0.0320813 0.999485i \(-0.510214\pi\)
−0.0320813 + 0.999485i \(0.510214\pi\)
\(44\) 337776. 0.597784
\(45\) 0 0
\(46\) 83000.0 0.125726
\(47\) 136120. 0.191240 0.0956202 0.995418i \(-0.469517\pi\)
0.0956202 + 0.995418i \(0.469517\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 31250.0 0.0353553
\(51\) 0 0
\(52\) −356376. −0.351477
\(53\) 1.27062e6 1.17233 0.586166 0.810191i \(-0.300637\pi\)
0.586166 + 0.810191i \(0.300637\pi\)
\(54\) 0 0
\(55\) −340500. −0.275961
\(56\) −172872. −0.131543
\(57\) 0 0
\(58\) 70996.0 0.0477789
\(59\) 1.55325e6 0.984600 0.492300 0.870426i \(-0.336156\pi\)
0.492300 + 0.870426i \(0.336156\pi\)
\(60\) 0 0
\(61\) 213598. 0.120488 0.0602439 0.998184i \(-0.480812\pi\)
0.0602439 + 0.998184i \(0.480812\pi\)
\(62\) −105880. −0.0564213
\(63\) 0 0
\(64\) −1.71411e6 −0.817352
\(65\) 359250. 0.162256
\(66\) 0 0
\(67\) 487228. 0.197911 0.0989556 0.995092i \(-0.468450\pi\)
0.0989556 + 0.995092i \(0.468450\pi\)
\(68\) 1.15047e6 0.443706
\(69\) 0 0
\(70\) 85750.0 0.0298807
\(71\) −1.08600e6 −0.360102 −0.180051 0.983657i \(-0.557626\pi\)
−0.180051 + 0.983657i \(0.557626\pi\)
\(72\) 0 0
\(73\) −5.92198e6 −1.78171 −0.890855 0.454289i \(-0.849893\pi\)
−0.890855 + 0.454289i \(0.849893\pi\)
\(74\) −168196. −0.0482508
\(75\) 0 0
\(76\) 533696. 0.139459
\(77\) −934332. −0.233230
\(78\) 0 0
\(79\) −5.42982e6 −1.23906 −0.619528 0.784975i \(-0.712676\pi\)
−0.619528 + 0.784975i \(0.712676\pi\)
\(80\) 1.85800e6 0.405724
\(81\) 0 0
\(82\) −360684. −0.0722401
\(83\) −6.93340e6 −1.33099 −0.665493 0.746405i \(-0.731778\pi\)
−0.665493 + 0.746405i \(0.731778\pi\)
\(84\) 0 0
\(85\) −1.15975e6 −0.204832
\(86\) −66904.0 −0.0113425
\(87\) 0 0
\(88\) 1.37290e6 0.214757
\(89\) −262614. −0.0394869 −0.0197434 0.999805i \(-0.506285\pi\)
−0.0197434 + 0.999805i \(0.506285\pi\)
\(90\) 0 0
\(91\) 985782. 0.137131
\(92\) −5.14600e6 −0.688989
\(93\) 0 0
\(94\) 272240. 0.0338068
\(95\) −538000. −0.0643798
\(96\) 0 0
\(97\) −522234. −0.0580984 −0.0290492 0.999578i \(-0.509248\pi\)
−0.0290492 + 0.999578i \(0.509248\pi\)
\(98\) 235298. 0.0252538
\(99\) 0 0
\(100\) −1.93750e6 −0.193750
\(101\) 1.63961e6 0.158349 0.0791744 0.996861i \(-0.474772\pi\)
0.0791744 + 0.996861i \(0.474772\pi\)
\(102\) 0 0
\(103\) −6.57506e6 −0.592883 −0.296442 0.955051i \(-0.595800\pi\)
−0.296442 + 0.955051i \(0.595800\pi\)
\(104\) −1.44850e6 −0.126270
\(105\) 0 0
\(106\) 2.54124e6 0.207241
\(107\) −1.21480e7 −0.958654 −0.479327 0.877636i \(-0.659119\pi\)
−0.479327 + 0.877636i \(0.659119\pi\)
\(108\) 0 0
\(109\) −9.68452e6 −0.716284 −0.358142 0.933667i \(-0.616590\pi\)
−0.358142 + 0.933667i \(0.616590\pi\)
\(110\) −681000. −0.0487835
\(111\) 0 0
\(112\) 5.09835e6 0.342899
\(113\) −2.50296e7 −1.63184 −0.815922 0.578162i \(-0.803770\pi\)
−0.815922 + 0.578162i \(0.803770\pi\)
\(114\) 0 0
\(115\) 5.18750e6 0.318065
\(116\) −4.40175e6 −0.261832
\(117\) 0 0
\(118\) 3.10650e6 0.174054
\(119\) −3.18235e6 −0.173115
\(120\) 0 0
\(121\) −1.20670e7 −0.619228
\(122\) 427196. 0.0212994
\(123\) 0 0
\(124\) 6.56456e6 0.309193
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) 3.05960e6 0.132541 0.0662707 0.997802i \(-0.478890\pi\)
0.0662707 + 0.997802i \(0.478890\pi\)
\(128\) −1.54909e7 −0.652894
\(129\) 0 0
\(130\) 718500. 0.0286830
\(131\) 3.56912e6 0.138711 0.0693555 0.997592i \(-0.477906\pi\)
0.0693555 + 0.997592i \(0.477906\pi\)
\(132\) 0 0
\(133\) −1.47627e6 −0.0544109
\(134\) 974456. 0.0349861
\(135\) 0 0
\(136\) 4.67611e6 0.159404
\(137\) −4.83736e6 −0.160726 −0.0803630 0.996766i \(-0.525608\pi\)
−0.0803630 + 0.996766i \(0.525608\pi\)
\(138\) 0 0
\(139\) 2.48573e6 0.0785058 0.0392529 0.999229i \(-0.487502\pi\)
0.0392529 + 0.999229i \(0.487502\pi\)
\(140\) −5.31650e6 −0.163749
\(141\) 0 0
\(142\) −2.17200e6 −0.0636577
\(143\) −7.82878e6 −0.223881
\(144\) 0 0
\(145\) 4.43725e6 0.120872
\(146\) −1.18440e7 −0.314965
\(147\) 0 0
\(148\) 1.04282e7 0.264418
\(149\) 3.99895e7 0.990362 0.495181 0.868790i \(-0.335102\pi\)
0.495181 + 0.868790i \(0.335102\pi\)
\(150\) 0 0
\(151\) −5.37919e7 −1.27145 −0.635723 0.771918i \(-0.719298\pi\)
−0.635723 + 0.771918i \(0.719298\pi\)
\(152\) 2.16922e6 0.0501014
\(153\) 0 0
\(154\) −1.86866e6 −0.0412296
\(155\) −6.61750e6 −0.142736
\(156\) 0 0
\(157\) 9.64019e6 0.198809 0.0994046 0.995047i \(-0.468306\pi\)
0.0994046 + 0.995047i \(0.468306\pi\)
\(158\) −1.08596e7 −0.219036
\(159\) 0 0
\(160\) 1.17800e7 0.227366
\(161\) 1.42345e7 0.268814
\(162\) 0 0
\(163\) −7.67343e7 −1.38782 −0.693910 0.720062i \(-0.744113\pi\)
−0.693910 + 0.720062i \(0.744113\pi\)
\(164\) 2.23624e7 0.395881
\(165\) 0 0
\(166\) −1.38668e7 −0.235287
\(167\) −1.03856e7 −0.172554 −0.0862770 0.996271i \(-0.527497\pi\)
−0.0862770 + 0.996271i \(0.527497\pi\)
\(168\) 0 0
\(169\) −5.44886e7 −0.868365
\(170\) −2.31950e6 −0.0362096
\(171\) 0 0
\(172\) 4.14805e6 0.0621576
\(173\) 5.64927e6 0.0829528 0.0414764 0.999139i \(-0.486794\pi\)
0.0414764 + 0.999139i \(0.486794\pi\)
\(174\) 0 0
\(175\) 5.35938e6 0.0755929
\(176\) −4.04895e7 −0.559820
\(177\) 0 0
\(178\) −525228. −0.00698036
\(179\) 1.04373e8 1.36020 0.680098 0.733121i \(-0.261937\pi\)
0.680098 + 0.733121i \(0.261937\pi\)
\(180\) 0 0
\(181\) −1.42262e8 −1.78326 −0.891628 0.452769i \(-0.850436\pi\)
−0.891628 + 0.452769i \(0.850436\pi\)
\(182\) 1.97156e6 0.0242416
\(183\) 0 0
\(184\) −2.09160e7 −0.247523
\(185\) −1.05122e7 −0.122066
\(186\) 0 0
\(187\) 2.52733e7 0.282628
\(188\) −1.68789e7 −0.185264
\(189\) 0 0
\(190\) −1.07600e6 −0.0113808
\(191\) 3.35533e7 0.348433 0.174216 0.984707i \(-0.444261\pi\)
0.174216 + 0.984707i \(0.444261\pi\)
\(192\) 0 0
\(193\) −1.70599e8 −1.70815 −0.854073 0.520153i \(-0.825875\pi\)
−0.854073 + 0.520153i \(0.825875\pi\)
\(194\) −1.04447e6 −0.0102704
\(195\) 0 0
\(196\) −1.45885e7 −0.138393
\(197\) −6.92904e7 −0.645716 −0.322858 0.946447i \(-0.604644\pi\)
−0.322858 + 0.946447i \(0.604644\pi\)
\(198\) 0 0
\(199\) −6.71910e7 −0.604401 −0.302201 0.953244i \(-0.597721\pi\)
−0.302201 + 0.953244i \(0.597721\pi\)
\(200\) −7.87500e6 −0.0696058
\(201\) 0 0
\(202\) 3.27921e6 0.0279924
\(203\) 1.21758e7 0.102156
\(204\) 0 0
\(205\) −2.25428e7 −0.182755
\(206\) −1.31501e7 −0.104808
\(207\) 0 0
\(208\) 4.27191e7 0.329155
\(209\) 1.17241e7 0.0888316
\(210\) 0 0
\(211\) −5.14714e7 −0.377205 −0.188602 0.982054i \(-0.560396\pi\)
−0.188602 + 0.982054i \(0.560396\pi\)
\(212\) −1.57557e8 −1.13570
\(213\) 0 0
\(214\) −2.42960e7 −0.169468
\(215\) −4.18150e6 −0.0286944
\(216\) 0 0
\(217\) −1.81584e7 −0.120634
\(218\) −1.93690e7 −0.126622
\(219\) 0 0
\(220\) 4.22220e7 0.267337
\(221\) −2.66650e7 −0.166176
\(222\) 0 0
\(223\) −2.49372e8 −1.50585 −0.752923 0.658109i \(-0.771357\pi\)
−0.752923 + 0.658109i \(0.771357\pi\)
\(224\) 3.23243e7 0.192159
\(225\) 0 0
\(226\) −5.00591e7 −0.288472
\(227\) −3.93928e7 −0.223525 −0.111762 0.993735i \(-0.535650\pi\)
−0.111762 + 0.993735i \(0.535650\pi\)
\(228\) 0 0
\(229\) 1.25945e8 0.693035 0.346517 0.938044i \(-0.387364\pi\)
0.346517 + 0.938044i \(0.387364\pi\)
\(230\) 1.03750e7 0.0562265
\(231\) 0 0
\(232\) −1.78910e7 −0.0940647
\(233\) 1.55290e8 0.804265 0.402132 0.915582i \(-0.368269\pi\)
0.402132 + 0.915582i \(0.368269\pi\)
\(234\) 0 0
\(235\) 1.70150e7 0.0855253
\(236\) −1.92603e8 −0.953831
\(237\) 0 0
\(238\) −6.36471e6 −0.0306027
\(239\) 1.53561e8 0.727593 0.363797 0.931478i \(-0.381480\pi\)
0.363797 + 0.931478i \(0.381480\pi\)
\(240\) 0 0
\(241\) 1.67184e8 0.769369 0.384685 0.923048i \(-0.374310\pi\)
0.384685 + 0.923048i \(0.374310\pi\)
\(242\) −2.41340e7 −0.109465
\(243\) 0 0
\(244\) −2.64862e7 −0.116722
\(245\) 1.47061e7 0.0638877
\(246\) 0 0
\(247\) −1.23697e7 −0.0522300
\(248\) 2.66818e7 0.111079
\(249\) 0 0
\(250\) 3.90625e6 0.0158114
\(251\) 4.29028e7 0.171249 0.0856245 0.996327i \(-0.472711\pi\)
0.0856245 + 0.996327i \(0.472711\pi\)
\(252\) 0 0
\(253\) −1.13046e8 −0.438867
\(254\) 6.11920e6 0.0234302
\(255\) 0 0
\(256\) 1.88424e8 0.701936
\(257\) −4.70837e8 −1.73023 −0.865116 0.501571i \(-0.832755\pi\)
−0.865116 + 0.501571i \(0.832755\pi\)
\(258\) 0 0
\(259\) −2.88456e7 −0.103165
\(260\) −4.45470e7 −0.157185
\(261\) 0 0
\(262\) 7.13823e6 0.0245209
\(263\) 1.02607e8 0.347802 0.173901 0.984763i \(-0.444363\pi\)
0.173901 + 0.984763i \(0.444363\pi\)
\(264\) 0 0
\(265\) 1.58828e8 0.524283
\(266\) −2.95254e6 −0.00961857
\(267\) 0 0
\(268\) −6.04163e7 −0.191727
\(269\) 5.49478e8 1.72114 0.860571 0.509330i \(-0.170107\pi\)
0.860571 + 0.509330i \(0.170107\pi\)
\(270\) 0 0
\(271\) 3.38205e8 1.03225 0.516127 0.856512i \(-0.327373\pi\)
0.516127 + 0.856512i \(0.327373\pi\)
\(272\) −1.37908e8 −0.415527
\(273\) 0 0
\(274\) −9.67472e6 −0.0284126
\(275\) −4.25625e7 −0.123414
\(276\) 0 0
\(277\) 3.85029e8 1.08846 0.544232 0.838934i \(-0.316821\pi\)
0.544232 + 0.838934i \(0.316821\pi\)
\(278\) 4.97146e6 0.0138780
\(279\) 0 0
\(280\) −2.16090e7 −0.0588277
\(281\) −3.58731e8 −0.964488 −0.482244 0.876037i \(-0.660178\pi\)
−0.482244 + 0.876037i \(0.660178\pi\)
\(282\) 0 0
\(283\) 5.81811e7 0.152591 0.0762955 0.997085i \(-0.475691\pi\)
0.0762955 + 0.997085i \(0.475691\pi\)
\(284\) 1.34664e8 0.348849
\(285\) 0 0
\(286\) −1.56576e7 −0.0395770
\(287\) −6.18573e7 −0.154456
\(288\) 0 0
\(289\) −3.24257e8 −0.790219
\(290\) 8.87450e6 0.0213674
\(291\) 0 0
\(292\) 7.34325e8 1.72603
\(293\) −5.57054e8 −1.29378 −0.646890 0.762583i \(-0.723931\pi\)
−0.646890 + 0.762583i \(0.723931\pi\)
\(294\) 0 0
\(295\) 1.94156e8 0.440327
\(296\) 4.23854e7 0.0949938
\(297\) 0 0
\(298\) 7.99790e7 0.175073
\(299\) 1.19271e8 0.258039
\(300\) 0 0
\(301\) −1.14740e7 −0.0242512
\(302\) −1.07584e8 −0.224762
\(303\) 0 0
\(304\) −6.39747e7 −0.130602
\(305\) 2.66998e7 0.0538837
\(306\) 0 0
\(307\) 5.19798e8 1.02530 0.512649 0.858598i \(-0.328664\pi\)
0.512649 + 0.858598i \(0.328664\pi\)
\(308\) 1.15857e8 0.225941
\(309\) 0 0
\(310\) −1.32350e7 −0.0252324
\(311\) 3.93391e8 0.741589 0.370794 0.928715i \(-0.379085\pi\)
0.370794 + 0.928715i \(0.379085\pi\)
\(312\) 0 0
\(313\) 7.46643e8 1.37628 0.688142 0.725576i \(-0.258427\pi\)
0.688142 + 0.725576i \(0.258427\pi\)
\(314\) 1.92804e7 0.0351448
\(315\) 0 0
\(316\) 6.73298e8 1.20034
\(317\) −1.90220e8 −0.335389 −0.167694 0.985839i \(-0.553632\pi\)
−0.167694 + 0.985839i \(0.553632\pi\)
\(318\) 0 0
\(319\) −9.66966e7 −0.166780
\(320\) −2.14264e8 −0.365531
\(321\) 0 0
\(322\) 2.84690e7 0.0475200
\(323\) 3.99325e7 0.0659353
\(324\) 0 0
\(325\) 4.49063e7 0.0725630
\(326\) −1.53469e8 −0.245334
\(327\) 0 0
\(328\) 9.08924e7 0.142223
\(329\) 4.66892e7 0.0722820
\(330\) 0 0
\(331\) −1.09993e9 −1.66712 −0.833559 0.552430i \(-0.813701\pi\)
−0.833559 + 0.552430i \(0.813701\pi\)
\(332\) 8.59742e8 1.28939
\(333\) 0 0
\(334\) −2.07712e7 −0.0305035
\(335\) 6.09035e7 0.0885086
\(336\) 0 0
\(337\) 4.94657e8 0.704043 0.352022 0.935992i \(-0.385494\pi\)
0.352022 + 0.935992i \(0.385494\pi\)
\(338\) −1.08977e8 −0.153507
\(339\) 0 0
\(340\) 1.43809e8 0.198431
\(341\) 1.44209e8 0.196948
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 1.68598e7 0.0223305
\(345\) 0 0
\(346\) 1.12985e7 0.0146641
\(347\) 9.31091e8 1.19630 0.598148 0.801385i \(-0.295903\pi\)
0.598148 + 0.801385i \(0.295903\pi\)
\(348\) 0 0
\(349\) −4.56646e8 −0.575031 −0.287515 0.957776i \(-0.592829\pi\)
−0.287515 + 0.957776i \(0.592829\pi\)
\(350\) 1.07188e7 0.0133631
\(351\) 0 0
\(352\) −2.56710e8 −0.313721
\(353\) 5.02682e8 0.608250 0.304125 0.952632i \(-0.401636\pi\)
0.304125 + 0.952632i \(0.401636\pi\)
\(354\) 0 0
\(355\) −1.35750e8 −0.161043
\(356\) 3.25641e7 0.0382529
\(357\) 0 0
\(358\) 2.08746e8 0.240451
\(359\) 1.39665e9 1.59316 0.796578 0.604536i \(-0.206641\pi\)
0.796578 + 0.604536i \(0.206641\pi\)
\(360\) 0 0
\(361\) −8.75347e8 −0.979276
\(362\) −2.84524e8 −0.315238
\(363\) 0 0
\(364\) −1.22237e8 −0.132846
\(365\) −7.40247e8 −0.796804
\(366\) 0 0
\(367\) −2.70500e8 −0.285651 −0.142826 0.989748i \(-0.545619\pi\)
−0.142826 + 0.989748i \(0.545619\pi\)
\(368\) 6.16856e8 0.645233
\(369\) 0 0
\(370\) −2.10245e7 −0.0215784
\(371\) 4.35823e8 0.443100
\(372\) 0 0
\(373\) −1.06422e9 −1.06182 −0.530912 0.847427i \(-0.678150\pi\)
−0.530912 + 0.847427i \(0.678150\pi\)
\(374\) 5.05465e7 0.0499621
\(375\) 0 0
\(376\) −6.86045e7 −0.0665572
\(377\) 1.02021e8 0.0980609
\(378\) 0 0
\(379\) −3.95456e8 −0.373131 −0.186565 0.982443i \(-0.559736\pi\)
−0.186565 + 0.982443i \(0.559736\pi\)
\(380\) 6.67120e7 0.0623679
\(381\) 0 0
\(382\) 6.71067e7 0.0615948
\(383\) −1.64793e8 −0.149880 −0.0749400 0.997188i \(-0.523877\pi\)
−0.0749400 + 0.997188i \(0.523877\pi\)
\(384\) 0 0
\(385\) −1.16792e8 −0.104303
\(386\) −3.41197e8 −0.301960
\(387\) 0 0
\(388\) 6.47570e7 0.0562828
\(389\) 1.71125e8 0.147398 0.0736989 0.997281i \(-0.476520\pi\)
0.0736989 + 0.997281i \(0.476520\pi\)
\(390\) 0 0
\(391\) −3.85037e8 −0.325750
\(392\) −5.92951e7 −0.0497184
\(393\) 0 0
\(394\) −1.38581e8 −0.114147
\(395\) −6.78728e8 −0.554123
\(396\) 0 0
\(397\) 1.73552e9 1.39207 0.696037 0.718006i \(-0.254945\pi\)
0.696037 + 0.718006i \(0.254945\pi\)
\(398\) −1.34382e8 −0.106844
\(399\) 0 0
\(400\) 2.32250e8 0.181445
\(401\) −2.26343e8 −0.175292 −0.0876458 0.996152i \(-0.527934\pi\)
−0.0876458 + 0.996152i \(0.527934\pi\)
\(402\) 0 0
\(403\) −1.52150e8 −0.115799
\(404\) −2.03311e8 −0.153400
\(405\) 0 0
\(406\) 2.43516e7 0.0180587
\(407\) 2.29083e8 0.168427
\(408\) 0 0
\(409\) 1.14869e9 0.830176 0.415088 0.909781i \(-0.363751\pi\)
0.415088 + 0.909781i \(0.363751\pi\)
\(410\) −4.50855e7 −0.0323068
\(411\) 0 0
\(412\) 8.15307e8 0.574356
\(413\) 5.32765e8 0.372144
\(414\) 0 0
\(415\) −8.66676e8 −0.595235
\(416\) 2.70846e8 0.184457
\(417\) 0 0
\(418\) 2.34482e7 0.0157034
\(419\) −1.98365e9 −1.31740 −0.658699 0.752407i \(-0.728893\pi\)
−0.658699 + 0.752407i \(0.728893\pi\)
\(420\) 0 0
\(421\) 2.66045e9 1.73767 0.868835 0.495103i \(-0.164870\pi\)
0.868835 + 0.495103i \(0.164870\pi\)
\(422\) −1.02943e8 −0.0666810
\(423\) 0 0
\(424\) −6.40393e8 −0.408006
\(425\) −1.44969e8 −0.0916037
\(426\) 0 0
\(427\) 7.32641e7 0.0455401
\(428\) 1.50635e9 0.928696
\(429\) 0 0
\(430\) −8.36300e6 −0.00507251
\(431\) 1.50478e9 0.905322 0.452661 0.891683i \(-0.350475\pi\)
0.452661 + 0.891683i \(0.350475\pi\)
\(432\) 0 0
\(433\) 1.37803e9 0.815738 0.407869 0.913040i \(-0.366272\pi\)
0.407869 + 0.913040i \(0.366272\pi\)
\(434\) −3.63168e7 −0.0213252
\(435\) 0 0
\(436\) 1.20088e9 0.693900
\(437\) −1.78616e8 −0.102385
\(438\) 0 0
\(439\) 2.15016e9 1.21296 0.606478 0.795100i \(-0.292582\pi\)
0.606478 + 0.795100i \(0.292582\pi\)
\(440\) 1.71612e8 0.0960425
\(441\) 0 0
\(442\) −5.33299e7 −0.0293760
\(443\) 1.01094e9 0.552474 0.276237 0.961090i \(-0.410913\pi\)
0.276237 + 0.961090i \(0.410913\pi\)
\(444\) 0 0
\(445\) −3.28268e7 −0.0176591
\(446\) −4.98744e8 −0.266198
\(447\) 0 0
\(448\) −5.87940e8 −0.308930
\(449\) −1.82648e8 −0.0952256 −0.0476128 0.998866i \(-0.515161\pi\)
−0.0476128 + 0.998866i \(0.515161\pi\)
\(450\) 0 0
\(451\) 4.91252e8 0.252166
\(452\) 3.10367e9 1.58085
\(453\) 0 0
\(454\) −7.87855e7 −0.0395140
\(455\) 1.23223e8 0.0613269
\(456\) 0 0
\(457\) −1.51611e6 −0.000743060 0 −0.000371530 1.00000i \(-0.500118\pi\)
−0.000371530 1.00000i \(0.500118\pi\)
\(458\) 2.51889e8 0.122512
\(459\) 0 0
\(460\) −6.43250e8 −0.308125
\(461\) 4.79940e8 0.228157 0.114079 0.993472i \(-0.463608\pi\)
0.114079 + 0.993472i \(0.463608\pi\)
\(462\) 0 0
\(463\) −6.86812e8 −0.321591 −0.160796 0.986988i \(-0.551406\pi\)
−0.160796 + 0.986988i \(0.551406\pi\)
\(464\) 5.27642e8 0.245203
\(465\) 0 0
\(466\) 3.10581e8 0.142175
\(467\) −1.69004e9 −0.767869 −0.383934 0.923360i \(-0.625431\pi\)
−0.383934 + 0.923360i \(0.625431\pi\)
\(468\) 0 0
\(469\) 1.67119e8 0.0748034
\(470\) 3.40300e7 0.0151189
\(471\) 0 0
\(472\) −7.82839e8 −0.342670
\(473\) 9.11232e7 0.0395927
\(474\) 0 0
\(475\) −6.72500e7 −0.0287915
\(476\) 3.94612e8 0.167705
\(477\) 0 0
\(478\) 3.07122e8 0.128622
\(479\) −2.39843e9 −0.997132 −0.498566 0.866852i \(-0.666140\pi\)
−0.498566 + 0.866852i \(0.666140\pi\)
\(480\) 0 0
\(481\) −2.41698e8 −0.0990295
\(482\) 3.34368e8 0.136007
\(483\) 0 0
\(484\) 1.49631e9 0.599877
\(485\) −6.52792e7 −0.0259824
\(486\) 0 0
\(487\) −6.76814e8 −0.265533 −0.132766 0.991147i \(-0.542386\pi\)
−0.132766 + 0.991147i \(0.542386\pi\)
\(488\) −1.07653e8 −0.0419332
\(489\) 0 0
\(490\) 2.94122e7 0.0112938
\(491\) −3.97038e9 −1.51372 −0.756862 0.653574i \(-0.773269\pi\)
−0.756862 + 0.653574i \(0.773269\pi\)
\(492\) 0 0
\(493\) −3.29350e8 −0.123792
\(494\) −2.47394e7 −0.00923304
\(495\) 0 0
\(496\) −7.86900e8 −0.289557
\(497\) −3.72498e8 −0.136106
\(498\) 0 0
\(499\) 1.59757e9 0.575584 0.287792 0.957693i \(-0.407079\pi\)
0.287792 + 0.957693i \(0.407079\pi\)
\(500\) −2.42188e8 −0.0866476
\(501\) 0 0
\(502\) 8.58056e7 0.0302728
\(503\) −1.72479e9 −0.604295 −0.302148 0.953261i \(-0.597704\pi\)
−0.302148 + 0.953261i \(0.597704\pi\)
\(504\) 0 0
\(505\) 2.04951e8 0.0708157
\(506\) −2.26092e8 −0.0775815
\(507\) 0 0
\(508\) −3.79390e8 −0.128400
\(509\) −5.83626e9 −1.96165 −0.980827 0.194880i \(-0.937568\pi\)
−0.980827 + 0.194880i \(0.937568\pi\)
\(510\) 0 0
\(511\) −2.03124e9 −0.673423
\(512\) 2.35969e9 0.776980
\(513\) 0 0
\(514\) −9.41674e8 −0.305865
\(515\) −8.21882e8 −0.265145
\(516\) 0 0
\(517\) −3.70791e8 −0.118008
\(518\) −5.76912e7 −0.0182371
\(519\) 0 0
\(520\) −1.81062e8 −0.0564697
\(521\) −4.99457e9 −1.54727 −0.773634 0.633632i \(-0.781563\pi\)
−0.773634 + 0.633632i \(0.781563\pi\)
\(522\) 0 0
\(523\) 1.03723e9 0.317045 0.158522 0.987355i \(-0.449327\pi\)
0.158522 + 0.987355i \(0.449327\pi\)
\(524\) −4.42570e8 −0.134376
\(525\) 0 0
\(526\) 2.05214e8 0.0614834
\(527\) 4.91177e8 0.146184
\(528\) 0 0
\(529\) −1.68258e9 −0.494174
\(530\) 3.17655e8 0.0926810
\(531\) 0 0
\(532\) 1.83058e8 0.0527105
\(533\) −5.18303e8 −0.148265
\(534\) 0 0
\(535\) −1.51850e9 −0.428723
\(536\) −2.45563e8 −0.0688789
\(537\) 0 0
\(538\) 1.09896e9 0.304258
\(539\) −3.20476e8 −0.0881525
\(540\) 0 0
\(541\) −2.48336e9 −0.674295 −0.337147 0.941452i \(-0.609462\pi\)
−0.337147 + 0.941452i \(0.609462\pi\)
\(542\) 6.76409e8 0.182479
\(543\) 0 0
\(544\) −8.74359e8 −0.232859
\(545\) −1.21057e9 −0.320332
\(546\) 0 0
\(547\) −3.74874e9 −0.979331 −0.489665 0.871910i \(-0.662881\pi\)
−0.489665 + 0.871910i \(0.662881\pi\)
\(548\) 5.99832e8 0.155703
\(549\) 0 0
\(550\) −8.51250e7 −0.0218166
\(551\) −1.52783e8 −0.0389086
\(552\) 0 0
\(553\) −1.86243e9 −0.468319
\(554\) 7.70058e8 0.192415
\(555\) 0 0
\(556\) −3.08230e8 −0.0760525
\(557\) 2.18032e9 0.534596 0.267298 0.963614i \(-0.413869\pi\)
0.267298 + 0.963614i \(0.413869\pi\)
\(558\) 0 0
\(559\) −9.61410e7 −0.0232792
\(560\) 6.37294e8 0.153349
\(561\) 0 0
\(562\) −7.17462e8 −0.170499
\(563\) −2.56548e9 −0.605883 −0.302941 0.953009i \(-0.597969\pi\)
−0.302941 + 0.953009i \(0.597969\pi\)
\(564\) 0 0
\(565\) −3.12869e9 −0.729783
\(566\) 1.16362e8 0.0269745
\(567\) 0 0
\(568\) 5.47344e8 0.125326
\(569\) −1.65916e8 −0.0377568 −0.0188784 0.999822i \(-0.506010\pi\)
−0.0188784 + 0.999822i \(0.506010\pi\)
\(570\) 0 0
\(571\) −5.11928e9 −1.15075 −0.575377 0.817888i \(-0.695145\pi\)
−0.575377 + 0.817888i \(0.695145\pi\)
\(572\) 9.70768e8 0.216885
\(573\) 0 0
\(574\) −1.23715e8 −0.0273042
\(575\) 6.48438e8 0.142243
\(576\) 0 0
\(577\) −6.90669e9 −1.49677 −0.748384 0.663265i \(-0.769170\pi\)
−0.748384 + 0.663265i \(0.769170\pi\)
\(578\) −6.48515e8 −0.139692
\(579\) 0 0
\(580\) −5.50219e8 −0.117095
\(581\) −2.37816e9 −0.503065
\(582\) 0 0
\(583\) −3.46117e9 −0.723408
\(584\) 2.98468e9 0.620087
\(585\) 0 0
\(586\) −1.11411e9 −0.228710
\(587\) 4.92686e9 1.00540 0.502698 0.864462i \(-0.332341\pi\)
0.502698 + 0.864462i \(0.332341\pi\)
\(588\) 0 0
\(589\) 2.27854e8 0.0459465
\(590\) 3.88313e8 0.0778395
\(591\) 0 0
\(592\) −1.25003e9 −0.247626
\(593\) −2.48990e9 −0.490332 −0.245166 0.969481i \(-0.578842\pi\)
−0.245166 + 0.969481i \(0.578842\pi\)
\(594\) 0 0
\(595\) −3.97794e8 −0.0774193
\(596\) −4.95870e9 −0.959413
\(597\) 0 0
\(598\) 2.38542e8 0.0456153
\(599\) 1.79975e9 0.342151 0.171076 0.985258i \(-0.445276\pi\)
0.171076 + 0.985258i \(0.445276\pi\)
\(600\) 0 0
\(601\) −9.64250e9 −1.81188 −0.905939 0.423409i \(-0.860834\pi\)
−0.905939 + 0.423409i \(0.860834\pi\)
\(602\) −2.29481e7 −0.00428705
\(603\) 0 0
\(604\) 6.67020e9 1.23171
\(605\) −1.50837e9 −0.276927
\(606\) 0 0
\(607\) −7.59240e9 −1.37790 −0.688951 0.724808i \(-0.741929\pi\)
−0.688951 + 0.724808i \(0.741929\pi\)
\(608\) −4.05609e8 −0.0731889
\(609\) 0 0
\(610\) 5.33995e7 0.00952539
\(611\) 3.91209e8 0.0693848
\(612\) 0 0
\(613\) 6.21966e9 1.09057 0.545287 0.838249i \(-0.316421\pi\)
0.545287 + 0.838249i \(0.316421\pi\)
\(614\) 1.03960e9 0.181249
\(615\) 0 0
\(616\) 4.70903e8 0.0811707
\(617\) 1.01931e10 1.74706 0.873529 0.486772i \(-0.161826\pi\)
0.873529 + 0.486772i \(0.161826\pi\)
\(618\) 0 0
\(619\) −1.86525e9 −0.316097 −0.158048 0.987431i \(-0.550520\pi\)
−0.158048 + 0.987431i \(0.550520\pi\)
\(620\) 8.20570e8 0.138275
\(621\) 0 0
\(622\) 7.86782e8 0.131096
\(623\) −9.00766e7 −0.0149246
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 1.49329e9 0.243295
\(627\) 0 0
\(628\) −1.19538e9 −0.192596
\(629\) 7.80261e8 0.125015
\(630\) 0 0
\(631\) 3.03048e9 0.480185 0.240092 0.970750i \(-0.422822\pi\)
0.240092 + 0.970750i \(0.422822\pi\)
\(632\) 2.73663e9 0.431228
\(633\) 0 0
\(634\) −3.80440e8 −0.0592889
\(635\) 3.82450e8 0.0592743
\(636\) 0 0
\(637\) 3.38123e8 0.0518307
\(638\) −1.93393e8 −0.0294828
\(639\) 0 0
\(640\) −1.93637e9 −0.291983
\(641\) −1.08550e10 −1.62789 −0.813945 0.580942i \(-0.802684\pi\)
−0.813945 + 0.580942i \(0.802684\pi\)
\(642\) 0 0
\(643\) 9.35593e8 0.138787 0.0693934 0.997589i \(-0.477894\pi\)
0.0693934 + 0.997589i \(0.477894\pi\)
\(644\) −1.76508e9 −0.260413
\(645\) 0 0
\(646\) 7.98650e7 0.0116558
\(647\) 8.82519e9 1.28103 0.640514 0.767946i \(-0.278721\pi\)
0.640514 + 0.767946i \(0.278721\pi\)
\(648\) 0 0
\(649\) −4.23106e9 −0.607565
\(650\) 8.98125e7 0.0128274
\(651\) 0 0
\(652\) 9.51506e9 1.34445
\(653\) −2.99850e9 −0.421413 −0.210707 0.977549i \(-0.567576\pi\)
−0.210707 + 0.977549i \(0.567576\pi\)
\(654\) 0 0
\(655\) 4.46140e8 0.0620335
\(656\) −2.68060e9 −0.370740
\(657\) 0 0
\(658\) 9.33783e7 0.0127778
\(659\) 3.93595e9 0.535736 0.267868 0.963456i \(-0.413681\pi\)
0.267868 + 0.963456i \(0.413681\pi\)
\(660\) 0 0
\(661\) −6.26839e8 −0.0844211 −0.0422106 0.999109i \(-0.513440\pi\)
−0.0422106 + 0.999109i \(0.513440\pi\)
\(662\) −2.19986e9 −0.294708
\(663\) 0 0
\(664\) 3.49444e9 0.463222
\(665\) −1.84534e8 −0.0243333
\(666\) 0 0
\(667\) 1.47317e9 0.192226
\(668\) 1.28782e9 0.167162
\(669\) 0 0
\(670\) 1.21807e8 0.0156463
\(671\) −5.81841e8 −0.0743491
\(672\) 0 0
\(673\) 4.74113e9 0.599555 0.299777 0.954009i \(-0.403088\pi\)
0.299777 + 0.954009i \(0.403088\pi\)
\(674\) 9.89313e8 0.124458
\(675\) 0 0
\(676\) 6.75659e9 0.841229
\(677\) 8.34660e9 1.03383 0.516915 0.856037i \(-0.327080\pi\)
0.516915 + 0.856037i \(0.327080\pi\)
\(678\) 0 0
\(679\) −1.79126e8 −0.0219591
\(680\) 5.84514e8 0.0712876
\(681\) 0 0
\(682\) 2.88417e8 0.0348157
\(683\) −1.00158e10 −1.20286 −0.601428 0.798927i \(-0.705401\pi\)
−0.601428 + 0.798927i \(0.705401\pi\)
\(684\) 0 0
\(685\) −6.04670e8 −0.0718789
\(686\) 8.07072e7 0.00954504
\(687\) 0 0
\(688\) −4.97231e8 −0.0582101
\(689\) 3.65177e9 0.425340
\(690\) 0 0
\(691\) −1.16744e10 −1.34605 −0.673024 0.739621i \(-0.735005\pi\)
−0.673024 + 0.739621i \(0.735005\pi\)
\(692\) −7.00509e8 −0.0803605
\(693\) 0 0
\(694\) 1.86218e9 0.211477
\(695\) 3.10716e8 0.0351089
\(696\) 0 0
\(697\) 1.67321e9 0.187170
\(698\) −9.13293e8 −0.101652
\(699\) 0 0
\(700\) −6.64562e8 −0.0732306
\(701\) −7.05584e9 −0.773634 −0.386817 0.922157i \(-0.626425\pi\)
−0.386817 + 0.922157i \(0.626425\pi\)
\(702\) 0 0
\(703\) 3.61958e8 0.0392929
\(704\) 4.66924e9 0.504362
\(705\) 0 0
\(706\) 1.00536e9 0.107524
\(707\) 5.62385e8 0.0598502
\(708\) 0 0
\(709\) 1.96477e8 0.0207038 0.0103519 0.999946i \(-0.496705\pi\)
0.0103519 + 0.999946i \(0.496705\pi\)
\(710\) −2.71500e8 −0.0284686
\(711\) 0 0
\(712\) 1.32357e8 0.0137426
\(713\) −2.19701e9 −0.226996
\(714\) 0 0
\(715\) −9.78597e8 −0.100123
\(716\) −1.29422e10 −1.31769
\(717\) 0 0
\(718\) 2.79331e9 0.281633
\(719\) 8.96572e9 0.899569 0.449784 0.893137i \(-0.351501\pi\)
0.449784 + 0.893137i \(0.351501\pi\)
\(720\) 0 0
\(721\) −2.25524e9 −0.224089
\(722\) −1.75069e9 −0.173113
\(723\) 0 0
\(724\) 1.76405e10 1.72753
\(725\) 5.54656e8 0.0540556
\(726\) 0 0
\(727\) −4.44082e9 −0.428640 −0.214320 0.976763i \(-0.568754\pi\)
−0.214320 + 0.976763i \(0.568754\pi\)
\(728\) −4.96834e8 −0.0477256
\(729\) 0 0
\(730\) −1.48049e9 −0.140856
\(731\) 3.10368e8 0.0293877
\(732\) 0 0
\(733\) −8.97113e9 −0.841363 −0.420681 0.907208i \(-0.638209\pi\)
−0.420681 + 0.907208i \(0.638209\pi\)
\(734\) −5.41000e8 −0.0504965
\(735\) 0 0
\(736\) 3.91096e9 0.361586
\(737\) −1.32721e9 −0.122125
\(738\) 0 0
\(739\) 1.27011e10 1.15767 0.578835 0.815445i \(-0.303508\pi\)
0.578835 + 0.815445i \(0.303508\pi\)
\(740\) 1.30352e9 0.118251
\(741\) 0 0
\(742\) 8.71647e8 0.0783298
\(743\) 1.54200e10 1.37919 0.689593 0.724197i \(-0.257789\pi\)
0.689593 + 0.724197i \(0.257789\pi\)
\(744\) 0 0
\(745\) 4.99869e9 0.442903
\(746\) −2.12845e9 −0.187706
\(747\) 0 0
\(748\) −3.13389e9 −0.273796
\(749\) −4.16677e9 −0.362337
\(750\) 0 0
\(751\) 4.99561e9 0.430376 0.215188 0.976573i \(-0.430964\pi\)
0.215188 + 0.976573i \(0.430964\pi\)
\(752\) 2.02329e9 0.173498
\(753\) 0 0
\(754\) 2.04043e8 0.0173349
\(755\) −6.72399e9 −0.568608
\(756\) 0 0
\(757\) 1.13781e10 0.953313 0.476657 0.879090i \(-0.341848\pi\)
0.476657 + 0.879090i \(0.341848\pi\)
\(758\) −7.90912e8 −0.0659608
\(759\) 0 0
\(760\) 2.71152e8 0.0224060
\(761\) −9.31372e9 −0.766084 −0.383042 0.923731i \(-0.625124\pi\)
−0.383042 + 0.923731i \(0.625124\pi\)
\(762\) 0 0
\(763\) −3.32179e9 −0.270730
\(764\) −4.16061e9 −0.337544
\(765\) 0 0
\(766\) −3.29586e8 −0.0264953
\(767\) 4.46405e9 0.357228
\(768\) 0 0
\(769\) −5.75726e9 −0.456535 −0.228267 0.973598i \(-0.573306\pi\)
−0.228267 + 0.973598i \(0.573306\pi\)
\(770\) −2.33583e8 −0.0184384
\(771\) 0 0
\(772\) 2.11542e10 1.65477
\(773\) −1.45658e10 −1.13424 −0.567121 0.823634i \(-0.691943\pi\)
−0.567121 + 0.823634i \(0.691943\pi\)
\(774\) 0 0
\(775\) −8.27188e8 −0.0638334
\(776\) 2.63206e8 0.0202199
\(777\) 0 0
\(778\) 3.42251e8 0.0260565
\(779\) 7.76192e8 0.0588285
\(780\) 0 0
\(781\) 2.95826e9 0.222207
\(782\) −7.70074e8 −0.0575849
\(783\) 0 0
\(784\) 1.74873e9 0.129604
\(785\) 1.20502e9 0.0889102
\(786\) 0 0
\(787\) 7.81273e9 0.571336 0.285668 0.958329i \(-0.407785\pi\)
0.285668 + 0.958329i \(0.407785\pi\)
\(788\) 8.59201e9 0.625537
\(789\) 0 0
\(790\) −1.35746e9 −0.0979560
\(791\) −8.58514e9 −0.616779
\(792\) 0 0
\(793\) 6.13881e8 0.0437147
\(794\) 3.47103e9 0.246086
\(795\) 0 0
\(796\) 8.33168e9 0.585514
\(797\) −5.72212e9 −0.400362 −0.200181 0.979759i \(-0.564153\pi\)
−0.200181 + 0.979759i \(0.564153\pi\)
\(798\) 0 0
\(799\) −1.26292e9 −0.0875916
\(800\) 1.47250e9 0.101681
\(801\) 0 0
\(802\) −4.52685e8 −0.0309875
\(803\) 1.61315e10 1.09943
\(804\) 0 0
\(805\) 1.77931e9 0.120217
\(806\) −3.04299e8 −0.0204705
\(807\) 0 0
\(808\) −8.26361e8 −0.0551100
\(809\) 9.16070e9 0.608287 0.304144 0.952626i \(-0.401630\pi\)
0.304144 + 0.952626i \(0.401630\pi\)
\(810\) 0 0
\(811\) −2.04091e10 −1.34354 −0.671771 0.740759i \(-0.734466\pi\)
−0.671771 + 0.740759i \(0.734466\pi\)
\(812\) −1.50980e9 −0.0989632
\(813\) 0 0
\(814\) 4.58166e8 0.0297740
\(815\) −9.59179e9 −0.620652
\(816\) 0 0
\(817\) 1.43977e8 0.00923671
\(818\) 2.29738e9 0.146756
\(819\) 0 0
\(820\) 2.79530e9 0.177044
\(821\) −6.26680e9 −0.395225 −0.197613 0.980280i \(-0.563319\pi\)
−0.197613 + 0.980280i \(0.563319\pi\)
\(822\) 0 0
\(823\) 4.37792e9 0.273759 0.136879 0.990588i \(-0.456293\pi\)
0.136879 + 0.990588i \(0.456293\pi\)
\(824\) 3.31383e9 0.206341
\(825\) 0 0
\(826\) 1.06553e9 0.0657864
\(827\) 1.61665e10 0.993912 0.496956 0.867776i \(-0.334451\pi\)
0.496956 + 0.867776i \(0.334451\pi\)
\(828\) 0 0
\(829\) 2.76523e10 1.68574 0.842868 0.538120i \(-0.180865\pi\)
0.842868 + 0.538120i \(0.180865\pi\)
\(830\) −1.73335e9 −0.105224
\(831\) 0 0
\(832\) −4.92636e9 −0.296548
\(833\) −1.09155e9 −0.0654312
\(834\) 0 0
\(835\) −1.29820e9 −0.0771685
\(836\) −1.45379e9 −0.0860556
\(837\) 0 0
\(838\) −3.96731e9 −0.232885
\(839\) 1.72137e10 1.00625 0.503126 0.864213i \(-0.332183\pi\)
0.503126 + 0.864213i \(0.332183\pi\)
\(840\) 0 0
\(841\) −1.59898e10 −0.926950
\(842\) 5.32089e9 0.307179
\(843\) 0 0
\(844\) 6.38245e9 0.365417
\(845\) −6.81108e9 −0.388345
\(846\) 0 0
\(847\) −4.13898e9 −0.234046
\(848\) 1.88865e10 1.06357
\(849\) 0 0
\(850\) −2.89938e8 −0.0161934
\(851\) −3.49007e9 −0.194124
\(852\) 0 0
\(853\) 6.71439e9 0.370412 0.185206 0.982700i \(-0.440705\pi\)
0.185206 + 0.982700i \(0.440705\pi\)
\(854\) 1.46528e8 0.00805042
\(855\) 0 0
\(856\) 6.12260e9 0.333639
\(857\) 9.89153e9 0.536822 0.268411 0.963304i \(-0.413501\pi\)
0.268411 + 0.963304i \(0.413501\pi\)
\(858\) 0 0
\(859\) −3.35625e10 −1.80667 −0.903335 0.428937i \(-0.858888\pi\)
−0.903335 + 0.428937i \(0.858888\pi\)
\(860\) 5.18506e8 0.0277977
\(861\) 0 0
\(862\) 3.00956e9 0.160040
\(863\) −9.99427e9 −0.529314 −0.264657 0.964343i \(-0.585259\pi\)
−0.264657 + 0.964343i \(0.585259\pi\)
\(864\) 0 0
\(865\) 7.06159e8 0.0370976
\(866\) 2.75606e9 0.144203
\(867\) 0 0
\(868\) 2.25164e9 0.116864
\(869\) 1.47908e10 0.764581
\(870\) 0 0
\(871\) 1.40029e9 0.0718051
\(872\) 4.88100e9 0.249288
\(873\) 0 0
\(874\) −3.57232e8 −0.0180992
\(875\) 6.69922e8 0.0338062
\(876\) 0 0
\(877\) 1.24239e8 0.00621953 0.00310977 0.999995i \(-0.499010\pi\)
0.00310977 + 0.999995i \(0.499010\pi\)
\(878\) 4.30032e9 0.214422
\(879\) 0 0
\(880\) −5.06119e9 −0.250359
\(881\) −2.45438e10 −1.20928 −0.604640 0.796499i \(-0.706683\pi\)
−0.604640 + 0.796499i \(0.706683\pi\)
\(882\) 0 0
\(883\) 9.35492e9 0.457275 0.228638 0.973512i \(-0.426573\pi\)
0.228638 + 0.973512i \(0.426573\pi\)
\(884\) 3.30646e9 0.160983
\(885\) 0 0
\(886\) 2.02188e9 0.0976646
\(887\) 3.18320e10 1.53155 0.765776 0.643107i \(-0.222355\pi\)
0.765776 + 0.643107i \(0.222355\pi\)
\(888\) 0 0
\(889\) 1.04944e9 0.0500959
\(890\) −6.56535e7 −0.00312171
\(891\) 0 0
\(892\) 3.09221e10 1.45879
\(893\) −5.85860e8 −0.0275305
\(894\) 0 0
\(895\) 1.30466e10 0.608298
\(896\) −5.31339e9 −0.246771
\(897\) 0 0
\(898\) −3.65297e8 −0.0168337
\(899\) −1.87926e9 −0.0862639
\(900\) 0 0
\(901\) −1.17888e10 −0.536950
\(902\) 9.82503e8 0.0445770
\(903\) 0 0
\(904\) 1.26149e10 0.567929
\(905\) −1.77827e10 −0.797496
\(906\) 0 0
\(907\) 2.00342e10 0.891552 0.445776 0.895144i \(-0.352928\pi\)
0.445776 + 0.895144i \(0.352928\pi\)
\(908\) 4.88470e9 0.216540
\(909\) 0 0
\(910\) 2.46446e8 0.0108412
\(911\) 2.82239e10 1.23681 0.618405 0.785859i \(-0.287779\pi\)
0.618405 + 0.785859i \(0.287779\pi\)
\(912\) 0 0
\(913\) 1.88866e10 0.821308
\(914\) −3.03222e6 −0.000131356 0
\(915\) 0 0
\(916\) −1.56171e10 −0.671377
\(917\) 1.22421e9 0.0524279
\(918\) 0 0
\(919\) −3.40984e10 −1.44921 −0.724603 0.689167i \(-0.757977\pi\)
−0.724603 + 0.689167i \(0.757977\pi\)
\(920\) −2.61450e9 −0.110696
\(921\) 0 0
\(922\) 9.59881e8 0.0403329
\(923\) −3.12116e9 −0.130650
\(924\) 0 0
\(925\) −1.31403e9 −0.0545896
\(926\) −1.37362e9 −0.0568499
\(927\) 0 0
\(928\) 3.34533e9 0.137411
\(929\) 2.18397e10 0.893698 0.446849 0.894609i \(-0.352546\pi\)
0.446849 + 0.894609i \(0.352546\pi\)
\(930\) 0 0
\(931\) −5.06361e8 −0.0205654
\(932\) −1.92560e10 −0.779131
\(933\) 0 0
\(934\) −3.38007e9 −0.135741
\(935\) 3.15916e9 0.126395
\(936\) 0 0
\(937\) −1.29359e10 −0.513699 −0.256849 0.966451i \(-0.582684\pi\)
−0.256849 + 0.966451i \(0.582684\pi\)
\(938\) 3.34238e8 0.0132235
\(939\) 0 0
\(940\) −2.10986e9 −0.0828526
\(941\) 1.70996e10 0.668995 0.334497 0.942397i \(-0.391433\pi\)
0.334497 + 0.942397i \(0.391433\pi\)
\(942\) 0 0
\(943\) −7.48419e9 −0.290639
\(944\) 2.30875e10 0.893255
\(945\) 0 0
\(946\) 1.82246e8 0.00699907
\(947\) 1.95022e8 0.00746207 0.00373104 0.999993i \(-0.498812\pi\)
0.00373104 + 0.999993i \(0.498812\pi\)
\(948\) 0 0
\(949\) −1.70198e10 −0.646430
\(950\) −1.34500e8 −0.00508967
\(951\) 0 0
\(952\) 1.60391e9 0.0602490
\(953\) 1.97958e10 0.740878 0.370439 0.928857i \(-0.379207\pi\)
0.370439 + 0.928857i \(0.379207\pi\)
\(954\) 0 0
\(955\) 4.19417e9 0.155824
\(956\) −1.90416e10 −0.704856
\(957\) 0 0
\(958\) −4.79686e9 −0.176270
\(959\) −1.65921e9 −0.0607487
\(960\) 0 0
\(961\) −2.47100e10 −0.898132
\(962\) −4.83395e8 −0.0175061
\(963\) 0 0
\(964\) −2.07308e10 −0.745327
\(965\) −2.13248e10 −0.763906
\(966\) 0 0
\(967\) 4.18825e10 1.48950 0.744748 0.667346i \(-0.232570\pi\)
0.744748 + 0.667346i \(0.232570\pi\)
\(968\) 6.08177e9 0.215509
\(969\) 0 0
\(970\) −1.30559e8 −0.00459308
\(971\) 1.82766e9 0.0640661 0.0320331 0.999487i \(-0.489802\pi\)
0.0320331 + 0.999487i \(0.489802\pi\)
\(972\) 0 0
\(973\) 8.52605e8 0.0296724
\(974\) −1.35363e9 −0.0469400
\(975\) 0 0
\(976\) 3.17492e9 0.109310
\(977\) −4.04873e10 −1.38895 −0.694477 0.719515i \(-0.744364\pi\)
−0.694477 + 0.719515i \(0.744364\pi\)
\(978\) 0 0
\(979\) 7.15361e8 0.0243661
\(980\) −1.82356e9 −0.0618912
\(981\) 0 0
\(982\) −7.94076e9 −0.267591
\(983\) −1.79913e9 −0.0604124 −0.0302062 0.999544i \(-0.509616\pi\)
−0.0302062 + 0.999544i \(0.509616\pi\)
\(984\) 0 0
\(985\) −8.66130e9 −0.288773
\(986\) −6.58701e8 −0.0218836
\(987\) 0 0
\(988\) 1.53384e9 0.0505978
\(989\) −1.38826e9 −0.0456334
\(990\) 0 0
\(991\) −1.80926e10 −0.590532 −0.295266 0.955415i \(-0.595408\pi\)
−0.295266 + 0.955415i \(0.595408\pi\)
\(992\) −4.98907e9 −0.162266
\(993\) 0 0
\(994\) −7.44996e8 −0.0240603
\(995\) −8.39888e9 −0.270296
\(996\) 0 0
\(997\) 4.79210e10 1.53141 0.765707 0.643189i \(-0.222389\pi\)
0.765707 + 0.643189i \(0.222389\pi\)
\(998\) 3.19514e9 0.101750
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.b.1.1 1
3.2 odd 2 105.8.a.a.1.1 1
15.14 odd 2 525.8.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.a.1.1 1 3.2 odd 2
315.8.a.b.1.1 1 1.1 even 1 trivial
525.8.a.c.1.1 1 15.14 odd 2