Properties

Label 315.8.a.a.1.1
Level $315$
Weight $8$
Character 315.1
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-18.0000 q^{2} +196.000 q^{4} +125.000 q^{5} +343.000 q^{7} -1224.00 q^{8} +O(q^{10})\) \(q-18.0000 q^{2} +196.000 q^{4} +125.000 q^{5} +343.000 q^{7} -1224.00 q^{8} -2250.00 q^{10} +8016.00 q^{11} -1786.00 q^{13} -6174.00 q^{14} -3056.00 q^{16} -8358.00 q^{17} -5884.00 q^{19} +24500.0 q^{20} -144288. q^{22} +77700.0 q^{23} +15625.0 q^{25} +32148.0 q^{26} +67228.0 q^{28} -155742. q^{29} -310000. q^{31} +211680. q^{32} +150444. q^{34} +42875.0 q^{35} -433618. q^{37} +105912. q^{38} -153000. q^{40} -357942. q^{41} -724492. q^{43} +1.57114e6 q^{44} -1.39860e6 q^{46} -175320. q^{47} +117649. q^{49} -281250. q^{50} -350056. q^{52} -132198. q^{53} +1.00200e6 q^{55} -419832. q^{56} +2.80336e6 q^{58} -2.64863e6 q^{59} +835478. q^{61} +5.58000e6 q^{62} -3.41907e6 q^{64} -223250. q^{65} +3.48631e6 q^{67} -1.63817e6 q^{68} -771750. q^{70} +2.87226e6 q^{71} +5.95188e6 q^{73} +7.80512e6 q^{74} -1.15326e6 q^{76} +2.74949e6 q^{77} -1.68090e6 q^{79} -382000. q^{80} +6.44296e6 q^{82} -3.57752e6 q^{83} -1.04475e6 q^{85} +1.30409e7 q^{86} -9.81158e6 q^{88} +6.25483e6 q^{89} -612598. q^{91} +1.52292e7 q^{92} +3.15576e6 q^{94} -735500. q^{95} -5.25705e6 q^{97} -2.11768e6 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −18.0000 −1.59099 −0.795495 0.605960i \(-0.792789\pi\)
−0.795495 + 0.605960i \(0.792789\pi\)
\(3\) 0 0
\(4\) 196.000 1.53125
\(5\) 125.000 0.447214
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) −1224.00 −0.845214
\(9\) 0 0
\(10\) −2250.00 −0.711512
\(11\) 8016.00 1.81586 0.907932 0.419118i \(-0.137660\pi\)
0.907932 + 0.419118i \(0.137660\pi\)
\(12\) 0 0
\(13\) −1786.00 −0.225465 −0.112733 0.993625i \(-0.535960\pi\)
−0.112733 + 0.993625i \(0.535960\pi\)
\(14\) −6174.00 −0.601338
\(15\) 0 0
\(16\) −3056.00 −0.186523
\(17\) −8358.00 −0.412602 −0.206301 0.978489i \(-0.566143\pi\)
−0.206301 + 0.978489i \(0.566143\pi\)
\(18\) 0 0
\(19\) −5884.00 −0.196805 −0.0984023 0.995147i \(-0.531373\pi\)
−0.0984023 + 0.995147i \(0.531373\pi\)
\(20\) 24500.0 0.684796
\(21\) 0 0
\(22\) −144288. −2.88902
\(23\) 77700.0 1.33160 0.665800 0.746131i \(-0.268091\pi\)
0.665800 + 0.746131i \(0.268091\pi\)
\(24\) 0 0
\(25\) 15625.0 0.200000
\(26\) 32148.0 0.358713
\(27\) 0 0
\(28\) 67228.0 0.578758
\(29\) −155742. −1.18580 −0.592902 0.805275i \(-0.702018\pi\)
−0.592902 + 0.805275i \(0.702018\pi\)
\(30\) 0 0
\(31\) −310000. −1.86894 −0.934471 0.356040i \(-0.884127\pi\)
−0.934471 + 0.356040i \(0.884127\pi\)
\(32\) 211680. 1.14197
\(33\) 0 0
\(34\) 150444. 0.656445
\(35\) 42875.0 0.169031
\(36\) 0 0
\(37\) −433618. −1.40735 −0.703674 0.710523i \(-0.748458\pi\)
−0.703674 + 0.710523i \(0.748458\pi\)
\(38\) 105912. 0.313114
\(39\) 0 0
\(40\) −153000. −0.377991
\(41\) −357942. −0.811090 −0.405545 0.914075i \(-0.632918\pi\)
−0.405545 + 0.914075i \(0.632918\pi\)
\(42\) 0 0
\(43\) −724492. −1.38961 −0.694807 0.719197i \(-0.744510\pi\)
−0.694807 + 0.719197i \(0.744510\pi\)
\(44\) 1.57114e6 2.78054
\(45\) 0 0
\(46\) −1.39860e6 −2.11856
\(47\) −175320. −0.246314 −0.123157 0.992387i \(-0.539302\pi\)
−0.123157 + 0.992387i \(0.539302\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) −281250. −0.318198
\(51\) 0 0
\(52\) −350056. −0.345244
\(53\) −132198. −0.121972 −0.0609859 0.998139i \(-0.519424\pi\)
−0.0609859 + 0.998139i \(0.519424\pi\)
\(54\) 0 0
\(55\) 1.00200e6 0.812079
\(56\) −419832. −0.319461
\(57\) 0 0
\(58\) 2.80336e6 1.88660
\(59\) −2.64863e6 −1.67895 −0.839477 0.543395i \(-0.817139\pi\)
−0.839477 + 0.543395i \(0.817139\pi\)
\(60\) 0 0
\(61\) 835478. 0.471282 0.235641 0.971840i \(-0.424281\pi\)
0.235641 + 0.971840i \(0.424281\pi\)
\(62\) 5.58000e6 2.97347
\(63\) 0 0
\(64\) −3.41907e6 −1.63034
\(65\) −223250. −0.100831
\(66\) 0 0
\(67\) 3.48631e6 1.41613 0.708066 0.706146i \(-0.249568\pi\)
0.708066 + 0.706146i \(0.249568\pi\)
\(68\) −1.63817e6 −0.631797
\(69\) 0 0
\(70\) −771750. −0.268926
\(71\) 2.87226e6 0.952400 0.476200 0.879337i \(-0.342014\pi\)
0.476200 + 0.879337i \(0.342014\pi\)
\(72\) 0 0
\(73\) 5.95188e6 1.79071 0.895353 0.445357i \(-0.146923\pi\)
0.895353 + 0.445357i \(0.146923\pi\)
\(74\) 7.80512e6 2.23908
\(75\) 0 0
\(76\) −1.15326e6 −0.301357
\(77\) 2.74949e6 0.686332
\(78\) 0 0
\(79\) −1.68090e6 −0.383573 −0.191787 0.981437i \(-0.561428\pi\)
−0.191787 + 0.981437i \(0.561428\pi\)
\(80\) −382000. −0.0834158
\(81\) 0 0
\(82\) 6.44296e6 1.29044
\(83\) −3.57752e6 −0.686767 −0.343383 0.939195i \(-0.611573\pi\)
−0.343383 + 0.939195i \(0.611573\pi\)
\(84\) 0 0
\(85\) −1.04475e6 −0.184521
\(86\) 1.30409e7 2.21086
\(87\) 0 0
\(88\) −9.81158e6 −1.53479
\(89\) 6.25483e6 0.940481 0.470241 0.882538i \(-0.344167\pi\)
0.470241 + 0.882538i \(0.344167\pi\)
\(90\) 0 0
\(91\) −612598. −0.0852179
\(92\) 1.52292e7 2.03901
\(93\) 0 0
\(94\) 3.15576e6 0.391883
\(95\) −735500. −0.0880137
\(96\) 0 0
\(97\) −5.25705e6 −0.584846 −0.292423 0.956289i \(-0.594461\pi\)
−0.292423 + 0.956289i \(0.594461\pi\)
\(98\) −2.11768e6 −0.227284
\(99\) 0 0
\(100\) 3.06250e6 0.306250
\(101\) −1.50250e7 −1.45107 −0.725535 0.688185i \(-0.758408\pi\)
−0.725535 + 0.688185i \(0.758408\pi\)
\(102\) 0 0
\(103\) −1.60066e7 −1.44334 −0.721669 0.692238i \(-0.756625\pi\)
−0.721669 + 0.692238i \(0.756625\pi\)
\(104\) 2.18606e6 0.190566
\(105\) 0 0
\(106\) 2.37956e6 0.194056
\(107\) −5.30105e6 −0.418330 −0.209165 0.977880i \(-0.567074\pi\)
−0.209165 + 0.977880i \(0.567074\pi\)
\(108\) 0 0
\(109\) −6.46340e6 −0.478045 −0.239022 0.971014i \(-0.576827\pi\)
−0.239022 + 0.971014i \(0.576827\pi\)
\(110\) −1.80360e7 −1.29201
\(111\) 0 0
\(112\) −1.04821e6 −0.0704992
\(113\) 1.48333e7 0.967082 0.483541 0.875322i \(-0.339350\pi\)
0.483541 + 0.875322i \(0.339350\pi\)
\(114\) 0 0
\(115\) 9.71250e6 0.595509
\(116\) −3.05254e7 −1.81576
\(117\) 0 0
\(118\) 4.76753e7 2.67120
\(119\) −2.86679e6 −0.155949
\(120\) 0 0
\(121\) 4.47691e7 2.29736
\(122\) −1.50386e7 −0.749805
\(123\) 0 0
\(124\) −6.07600e7 −2.86182
\(125\) 1.95312e6 0.0894427
\(126\) 0 0
\(127\) 1.35024e7 0.584920 0.292460 0.956278i \(-0.405526\pi\)
0.292460 + 0.956278i \(0.405526\pi\)
\(128\) 3.44483e7 1.45189
\(129\) 0 0
\(130\) 4.01850e6 0.160421
\(131\) −1.22470e7 −0.475972 −0.237986 0.971269i \(-0.576487\pi\)
−0.237986 + 0.971269i \(0.576487\pi\)
\(132\) 0 0
\(133\) −2.01821e6 −0.0743851
\(134\) −6.27535e7 −2.25305
\(135\) 0 0
\(136\) 1.02302e7 0.348737
\(137\) −1.24000e7 −0.412002 −0.206001 0.978552i \(-0.566045\pi\)
−0.206001 + 0.978552i \(0.566045\pi\)
\(138\) 0 0
\(139\) −5.95433e6 −0.188053 −0.0940267 0.995570i \(-0.529974\pi\)
−0.0940267 + 0.995570i \(0.529974\pi\)
\(140\) 8.40350e6 0.258828
\(141\) 0 0
\(142\) −5.17007e7 −1.51526
\(143\) −1.43166e7 −0.409414
\(144\) 0 0
\(145\) −1.94678e7 −0.530307
\(146\) −1.07134e8 −2.84900
\(147\) 0 0
\(148\) −8.49891e7 −2.15500
\(149\) 3.10990e7 0.770185 0.385092 0.922878i \(-0.374170\pi\)
0.385092 + 0.922878i \(0.374170\pi\)
\(150\) 0 0
\(151\) −1.43273e7 −0.338645 −0.169322 0.985561i \(-0.554158\pi\)
−0.169322 + 0.985561i \(0.554158\pi\)
\(152\) 7.20202e6 0.166342
\(153\) 0 0
\(154\) −4.94908e7 −1.09195
\(155\) −3.87500e7 −0.835816
\(156\) 0 0
\(157\) −5.81072e7 −1.19834 −0.599171 0.800621i \(-0.704503\pi\)
−0.599171 + 0.800621i \(0.704503\pi\)
\(158\) 3.02563e7 0.610261
\(159\) 0 0
\(160\) 2.64600e7 0.510705
\(161\) 2.66511e7 0.503297
\(162\) 0 0
\(163\) −2.36004e7 −0.426838 −0.213419 0.976961i \(-0.568460\pi\)
−0.213419 + 0.976961i \(0.568460\pi\)
\(164\) −7.01566e7 −1.24198
\(165\) 0 0
\(166\) 6.43954e7 1.09264
\(167\) −2.65801e7 −0.441621 −0.220810 0.975317i \(-0.570870\pi\)
−0.220810 + 0.975317i \(0.570870\pi\)
\(168\) 0 0
\(169\) −5.95587e7 −0.949165
\(170\) 1.88055e7 0.293571
\(171\) 0 0
\(172\) −1.42000e8 −2.12785
\(173\) 7.09671e7 1.04207 0.521033 0.853536i \(-0.325547\pi\)
0.521033 + 0.853536i \(0.325547\pi\)
\(174\) 0 0
\(175\) 5.35938e6 0.0755929
\(176\) −2.44969e7 −0.338701
\(177\) 0 0
\(178\) −1.12587e8 −1.49630
\(179\) −1.15061e8 −1.49949 −0.749746 0.661726i \(-0.769824\pi\)
−0.749746 + 0.661726i \(0.769824\pi\)
\(180\) 0 0
\(181\) −2.26091e6 −0.0283405 −0.0141702 0.999900i \(-0.504511\pi\)
−0.0141702 + 0.999900i \(0.504511\pi\)
\(182\) 1.10268e7 0.135581
\(183\) 0 0
\(184\) −9.51048e7 −1.12549
\(185\) −5.42022e7 −0.629385
\(186\) 0 0
\(187\) −6.69977e7 −0.749229
\(188\) −3.43627e7 −0.377168
\(189\) 0 0
\(190\) 1.32390e7 0.140029
\(191\) 8.07135e7 0.838165 0.419083 0.907948i \(-0.362352\pi\)
0.419083 + 0.907948i \(0.362352\pi\)
\(192\) 0 0
\(193\) 7.07939e7 0.708835 0.354418 0.935087i \(-0.384679\pi\)
0.354418 + 0.935087i \(0.384679\pi\)
\(194\) 9.46270e7 0.930484
\(195\) 0 0
\(196\) 2.30592e7 0.218750
\(197\) −7.53473e7 −0.702160 −0.351080 0.936345i \(-0.614185\pi\)
−0.351080 + 0.936345i \(0.614185\pi\)
\(198\) 0 0
\(199\) −1.57565e8 −1.41734 −0.708670 0.705540i \(-0.750705\pi\)
−0.708670 + 0.705540i \(0.750705\pi\)
\(200\) −1.91250e7 −0.169043
\(201\) 0 0
\(202\) 2.70449e8 2.30864
\(203\) −5.34195e7 −0.448192
\(204\) 0 0
\(205\) −4.47428e7 −0.362731
\(206\) 2.88118e8 2.29634
\(207\) 0 0
\(208\) 5.45802e6 0.0420546
\(209\) −4.71661e7 −0.357370
\(210\) 0 0
\(211\) −2.22118e8 −1.62778 −0.813890 0.581019i \(-0.802654\pi\)
−0.813890 + 0.581019i \(0.802654\pi\)
\(212\) −2.59108e7 −0.186769
\(213\) 0 0
\(214\) 9.54189e7 0.665558
\(215\) −9.05615e7 −0.621454
\(216\) 0 0
\(217\) −1.06330e8 −0.706394
\(218\) 1.16341e8 0.760564
\(219\) 0 0
\(220\) 1.96392e8 1.24350
\(221\) 1.49274e7 0.0930274
\(222\) 0 0
\(223\) 1.40215e8 0.846694 0.423347 0.905968i \(-0.360855\pi\)
0.423347 + 0.905968i \(0.360855\pi\)
\(224\) 7.26062e7 0.431624
\(225\) 0 0
\(226\) −2.66999e8 −1.53862
\(227\) 1.13463e8 0.643820 0.321910 0.946770i \(-0.395675\pi\)
0.321910 + 0.946770i \(0.395675\pi\)
\(228\) 0 0
\(229\) −1.00120e8 −0.550931 −0.275465 0.961311i \(-0.588832\pi\)
−0.275465 + 0.961311i \(0.588832\pi\)
\(230\) −1.74825e8 −0.947450
\(231\) 0 0
\(232\) 1.90628e8 1.00226
\(233\) 3.72064e8 1.92696 0.963478 0.267786i \(-0.0862921\pi\)
0.963478 + 0.267786i \(0.0862921\pi\)
\(234\) 0 0
\(235\) −2.19150e7 −0.110155
\(236\) −5.19131e8 −2.57090
\(237\) 0 0
\(238\) 5.16023e7 0.248113
\(239\) 9.50953e7 0.450574 0.225287 0.974292i \(-0.427668\pi\)
0.225287 + 0.974292i \(0.427668\pi\)
\(240\) 0 0
\(241\) −2.86367e8 −1.31784 −0.658921 0.752212i \(-0.728987\pi\)
−0.658921 + 0.752212i \(0.728987\pi\)
\(242\) −8.05844e8 −3.65508
\(243\) 0 0
\(244\) 1.63754e8 0.721650
\(245\) 1.47061e7 0.0638877
\(246\) 0 0
\(247\) 1.05088e7 0.0443726
\(248\) 3.79440e8 1.57965
\(249\) 0 0
\(250\) −3.51562e7 −0.142302
\(251\) −5.53423e7 −0.220902 −0.110451 0.993882i \(-0.535229\pi\)
−0.110451 + 0.993882i \(0.535229\pi\)
\(252\) 0 0
\(253\) 6.22843e8 2.41800
\(254\) −2.43042e8 −0.930602
\(255\) 0 0
\(256\) −1.82427e8 −0.679595
\(257\) 5.97749e7 0.219661 0.109830 0.993950i \(-0.464969\pi\)
0.109830 + 0.993950i \(0.464969\pi\)
\(258\) 0 0
\(259\) −1.48731e8 −0.531927
\(260\) −4.37570e7 −0.154398
\(261\) 0 0
\(262\) 2.20447e8 0.757267
\(263\) 1.23562e8 0.418833 0.209416 0.977827i \(-0.432844\pi\)
0.209416 + 0.977827i \(0.432844\pi\)
\(264\) 0 0
\(265\) −1.65248e7 −0.0545474
\(266\) 3.63278e7 0.118346
\(267\) 0 0
\(268\) 6.83316e8 2.16845
\(269\) −4.29280e8 −1.34465 −0.672323 0.740258i \(-0.734703\pi\)
−0.672323 + 0.740258i \(0.734703\pi\)
\(270\) 0 0
\(271\) −5.48961e8 −1.67552 −0.837759 0.546040i \(-0.816135\pi\)
−0.837759 + 0.546040i \(0.816135\pi\)
\(272\) 2.55420e7 0.0769599
\(273\) 0 0
\(274\) 2.23200e8 0.655491
\(275\) 1.25250e8 0.363173
\(276\) 0 0
\(277\) 3.32836e8 0.940915 0.470458 0.882423i \(-0.344089\pi\)
0.470458 + 0.882423i \(0.344089\pi\)
\(278\) 1.07178e8 0.299191
\(279\) 0 0
\(280\) −5.24790e7 −0.142867
\(281\) 4.54457e8 1.22186 0.610928 0.791686i \(-0.290796\pi\)
0.610928 + 0.791686i \(0.290796\pi\)
\(282\) 0 0
\(283\) 8.21849e7 0.215546 0.107773 0.994176i \(-0.465628\pi\)
0.107773 + 0.994176i \(0.465628\pi\)
\(284\) 5.62963e8 1.45836
\(285\) 0 0
\(286\) 2.57698e8 0.651374
\(287\) −1.22774e8 −0.306563
\(288\) 0 0
\(289\) −3.40483e8 −0.829760
\(290\) 3.50420e8 0.843714
\(291\) 0 0
\(292\) 1.16657e9 2.74202
\(293\) −3.71449e8 −0.862705 −0.431353 0.902183i \(-0.641964\pi\)
−0.431353 + 0.902183i \(0.641964\pi\)
\(294\) 0 0
\(295\) −3.31078e8 −0.750851
\(296\) 5.30748e8 1.18951
\(297\) 0 0
\(298\) −5.59782e8 −1.22536
\(299\) −1.38772e8 −0.300229
\(300\) 0 0
\(301\) −2.48501e8 −0.525225
\(302\) 2.57891e8 0.538780
\(303\) 0 0
\(304\) 1.79815e7 0.0367087
\(305\) 1.04435e8 0.210764
\(306\) 0 0
\(307\) −4.59953e8 −0.907255 −0.453628 0.891191i \(-0.649870\pi\)
−0.453628 + 0.891191i \(0.649870\pi\)
\(308\) 5.38900e8 1.05095
\(309\) 0 0
\(310\) 6.97500e8 1.32978
\(311\) 4.94973e8 0.933082 0.466541 0.884499i \(-0.345500\pi\)
0.466541 + 0.884499i \(0.345500\pi\)
\(312\) 0 0
\(313\) 3.59666e8 0.662971 0.331485 0.943460i \(-0.392450\pi\)
0.331485 + 0.943460i \(0.392450\pi\)
\(314\) 1.04593e9 1.90655
\(315\) 0 0
\(316\) −3.29457e8 −0.587346
\(317\) −1.84942e8 −0.326083 −0.163041 0.986619i \(-0.552130\pi\)
−0.163041 + 0.986619i \(0.552130\pi\)
\(318\) 0 0
\(319\) −1.24843e9 −2.15326
\(320\) −4.27384e8 −0.729110
\(321\) 0 0
\(322\) −4.79720e8 −0.800741
\(323\) 4.91785e7 0.0812019
\(324\) 0 0
\(325\) −2.79063e7 −0.0450931
\(326\) 4.24808e8 0.679095
\(327\) 0 0
\(328\) 4.38121e8 0.685544
\(329\) −6.01348e7 −0.0930979
\(330\) 0 0
\(331\) 1.02518e9 1.55383 0.776915 0.629605i \(-0.216783\pi\)
0.776915 + 0.629605i \(0.216783\pi\)
\(332\) −7.01195e8 −1.05161
\(333\) 0 0
\(334\) 4.78443e8 0.702615
\(335\) 4.35788e8 0.633314
\(336\) 0 0
\(337\) 1.13073e9 1.60936 0.804680 0.593709i \(-0.202337\pi\)
0.804680 + 0.593709i \(0.202337\pi\)
\(338\) 1.07206e9 1.51011
\(339\) 0 0
\(340\) −2.04771e8 −0.282548
\(341\) −2.48496e9 −3.39374
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 8.86778e8 1.17452
\(345\) 0 0
\(346\) −1.27741e9 −1.65792
\(347\) −6.28829e8 −0.807940 −0.403970 0.914772i \(-0.632370\pi\)
−0.403970 + 0.914772i \(0.632370\pi\)
\(348\) 0 0
\(349\) 9.05467e8 1.14021 0.570103 0.821573i \(-0.306903\pi\)
0.570103 + 0.821573i \(0.306903\pi\)
\(350\) −9.64688e7 −0.120268
\(351\) 0 0
\(352\) 1.69683e9 2.07366
\(353\) 1.13858e8 0.137769 0.0688843 0.997625i \(-0.478056\pi\)
0.0688843 + 0.997625i \(0.478056\pi\)
\(354\) 0 0
\(355\) 3.59033e8 0.425926
\(356\) 1.22595e9 1.44011
\(357\) 0 0
\(358\) 2.07111e9 2.38568
\(359\) −2.71654e8 −0.309874 −0.154937 0.987924i \(-0.549517\pi\)
−0.154937 + 0.987924i \(0.549517\pi\)
\(360\) 0 0
\(361\) −8.59250e8 −0.961268
\(362\) 4.06963e7 0.0450895
\(363\) 0 0
\(364\) −1.20069e8 −0.130490
\(365\) 7.43985e8 0.800828
\(366\) 0 0
\(367\) 1.35093e9 1.42659 0.713297 0.700862i \(-0.247201\pi\)
0.713297 + 0.700862i \(0.247201\pi\)
\(368\) −2.37451e8 −0.248374
\(369\) 0 0
\(370\) 9.75640e8 1.00135
\(371\) −4.53439e7 −0.0461010
\(372\) 0 0
\(373\) −1.09767e9 −1.09520 −0.547599 0.836741i \(-0.684458\pi\)
−0.547599 + 0.836741i \(0.684458\pi\)
\(374\) 1.20596e9 1.19202
\(375\) 0 0
\(376\) 2.14592e8 0.208188
\(377\) 2.78155e8 0.267358
\(378\) 0 0
\(379\) −4.31536e8 −0.407174 −0.203587 0.979057i \(-0.565260\pi\)
−0.203587 + 0.979057i \(0.565260\pi\)
\(380\) −1.44158e8 −0.134771
\(381\) 0 0
\(382\) −1.45284e9 −1.33351
\(383\) −5.29318e8 −0.481416 −0.240708 0.970598i \(-0.577380\pi\)
−0.240708 + 0.970598i \(0.577380\pi\)
\(384\) 0 0
\(385\) 3.43686e8 0.306937
\(386\) −1.27429e9 −1.12775
\(387\) 0 0
\(388\) −1.03038e9 −0.895545
\(389\) 1.27010e7 0.0109399 0.00546996 0.999985i \(-0.498259\pi\)
0.00546996 + 0.999985i \(0.498259\pi\)
\(390\) 0 0
\(391\) −6.49417e8 −0.549420
\(392\) −1.44002e8 −0.120745
\(393\) 0 0
\(394\) 1.35625e9 1.11713
\(395\) −2.10113e8 −0.171539
\(396\) 0 0
\(397\) −1.94087e9 −1.55679 −0.778393 0.627777i \(-0.783965\pi\)
−0.778393 + 0.627777i \(0.783965\pi\)
\(398\) 2.83617e9 2.25498
\(399\) 0 0
\(400\) −4.77500e7 −0.0373047
\(401\) −1.29335e9 −1.00164 −0.500819 0.865552i \(-0.666968\pi\)
−0.500819 + 0.865552i \(0.666968\pi\)
\(402\) 0 0
\(403\) 5.53660e8 0.421382
\(404\) −2.94489e9 −2.22195
\(405\) 0 0
\(406\) 9.61551e8 0.713069
\(407\) −3.47588e9 −2.55555
\(408\) 0 0
\(409\) −8.27345e8 −0.597937 −0.298968 0.954263i \(-0.596642\pi\)
−0.298968 + 0.954263i \(0.596642\pi\)
\(410\) 8.05370e8 0.577101
\(411\) 0 0
\(412\) −3.13729e9 −2.21011
\(413\) −9.08479e8 −0.634585
\(414\) 0 0
\(415\) −4.47190e8 −0.307131
\(416\) −3.78060e8 −0.257475
\(417\) 0 0
\(418\) 8.48991e8 0.568573
\(419\) 1.68808e9 1.12110 0.560550 0.828120i \(-0.310590\pi\)
0.560550 + 0.828120i \(0.310590\pi\)
\(420\) 0 0
\(421\) 1.24673e9 0.814301 0.407151 0.913361i \(-0.366522\pi\)
0.407151 + 0.913361i \(0.366522\pi\)
\(422\) 3.99813e9 2.58978
\(423\) 0 0
\(424\) 1.61810e8 0.103092
\(425\) −1.30594e8 −0.0825204
\(426\) 0 0
\(427\) 2.86569e8 0.178128
\(428\) −1.03901e9 −0.640567
\(429\) 0 0
\(430\) 1.63011e9 0.988727
\(431\) −1.41807e9 −0.853152 −0.426576 0.904452i \(-0.640280\pi\)
−0.426576 + 0.904452i \(0.640280\pi\)
\(432\) 0 0
\(433\) 2.11064e9 1.24942 0.624708 0.780858i \(-0.285218\pi\)
0.624708 + 0.780858i \(0.285218\pi\)
\(434\) 1.91394e9 1.12387
\(435\) 0 0
\(436\) −1.26683e9 −0.732006
\(437\) −4.57187e8 −0.262065
\(438\) 0 0
\(439\) −2.43638e9 −1.37442 −0.687209 0.726460i \(-0.741164\pi\)
−0.687209 + 0.726460i \(0.741164\pi\)
\(440\) −1.22645e9 −0.686380
\(441\) 0 0
\(442\) −2.68693e8 −0.148006
\(443\) −2.17599e9 −1.18917 −0.594585 0.804033i \(-0.702684\pi\)
−0.594585 + 0.804033i \(0.702684\pi\)
\(444\) 0 0
\(445\) 7.81853e8 0.420596
\(446\) −2.52386e9 −1.34708
\(447\) 0 0
\(448\) −1.17274e9 −0.616211
\(449\) 3.88948e8 0.202782 0.101391 0.994847i \(-0.467671\pi\)
0.101391 + 0.994847i \(0.467671\pi\)
\(450\) 0 0
\(451\) −2.86926e9 −1.47283
\(452\) 2.90733e9 1.48084
\(453\) 0 0
\(454\) −2.04234e9 −1.02431
\(455\) −7.65747e7 −0.0381106
\(456\) 0 0
\(457\) −3.97621e9 −1.94878 −0.974390 0.224864i \(-0.927806\pi\)
−0.974390 + 0.224864i \(0.927806\pi\)
\(458\) 1.80216e9 0.876526
\(459\) 0 0
\(460\) 1.90365e9 0.911874
\(461\) −3.61720e9 −1.71957 −0.859783 0.510659i \(-0.829401\pi\)
−0.859783 + 0.510659i \(0.829401\pi\)
\(462\) 0 0
\(463\) 2.41022e9 1.12855 0.564277 0.825585i \(-0.309155\pi\)
0.564277 + 0.825585i \(0.309155\pi\)
\(464\) 4.75948e8 0.221180
\(465\) 0 0
\(466\) −6.69715e9 −3.06577
\(467\) −1.75978e9 −0.799555 −0.399777 0.916612i \(-0.630913\pi\)
−0.399777 + 0.916612i \(0.630913\pi\)
\(468\) 0 0
\(469\) 1.19580e9 0.535248
\(470\) 3.94470e8 0.175255
\(471\) 0 0
\(472\) 3.24192e9 1.41908
\(473\) −5.80753e9 −2.52335
\(474\) 0 0
\(475\) −9.19375e7 −0.0393609
\(476\) −5.61892e8 −0.238797
\(477\) 0 0
\(478\) −1.71172e9 −0.716859
\(479\) 4.18797e9 1.74112 0.870562 0.492059i \(-0.163755\pi\)
0.870562 + 0.492059i \(0.163755\pi\)
\(480\) 0 0
\(481\) 7.74442e8 0.317308
\(482\) 5.15461e9 2.09667
\(483\) 0 0
\(484\) 8.77474e9 3.51784
\(485\) −6.57132e8 −0.261551
\(486\) 0 0
\(487\) −3.65982e9 −1.43585 −0.717924 0.696122i \(-0.754907\pi\)
−0.717924 + 0.696122i \(0.754907\pi\)
\(488\) −1.02263e9 −0.398334
\(489\) 0 0
\(490\) −2.64710e8 −0.101645
\(491\) 3.63614e9 1.38629 0.693146 0.720797i \(-0.256224\pi\)
0.693146 + 0.720797i \(0.256224\pi\)
\(492\) 0 0
\(493\) 1.30169e9 0.489265
\(494\) −1.89159e8 −0.0705964
\(495\) 0 0
\(496\) 9.47360e8 0.348601
\(497\) 9.85185e8 0.359973
\(498\) 0 0
\(499\) 6.51843e8 0.234850 0.117425 0.993082i \(-0.462536\pi\)
0.117425 + 0.993082i \(0.462536\pi\)
\(500\) 3.82812e8 0.136959
\(501\) 0 0
\(502\) 9.96161e8 0.351452
\(503\) 7.87014e8 0.275737 0.137868 0.990451i \(-0.455975\pi\)
0.137868 + 0.990451i \(0.455975\pi\)
\(504\) 0 0
\(505\) −1.87812e9 −0.648938
\(506\) −1.12112e10 −3.84702
\(507\) 0 0
\(508\) 2.64646e9 0.895659
\(509\) 6.08921e8 0.204667 0.102334 0.994750i \(-0.467369\pi\)
0.102334 + 0.994750i \(0.467369\pi\)
\(510\) 0 0
\(511\) 2.04150e9 0.676823
\(512\) −1.12568e9 −0.370656
\(513\) 0 0
\(514\) −1.07595e9 −0.349478
\(515\) −2.00082e9 −0.645481
\(516\) 0 0
\(517\) −1.40537e9 −0.447273
\(518\) 2.67716e9 0.846291
\(519\) 0 0
\(520\) 2.73258e8 0.0852239
\(521\) 1.12396e9 0.348193 0.174096 0.984729i \(-0.444300\pi\)
0.174096 + 0.984729i \(0.444300\pi\)
\(522\) 0 0
\(523\) 4.13165e9 1.26290 0.631448 0.775418i \(-0.282461\pi\)
0.631448 + 0.775418i \(0.282461\pi\)
\(524\) −2.40042e9 −0.728833
\(525\) 0 0
\(526\) −2.22412e9 −0.666359
\(527\) 2.59098e9 0.771129
\(528\) 0 0
\(529\) 2.63246e9 0.773157
\(530\) 2.97446e8 0.0867844
\(531\) 0 0
\(532\) −3.95570e8 −0.113902
\(533\) 6.39284e8 0.182873
\(534\) 0 0
\(535\) −6.62631e8 −0.187083
\(536\) −4.26724e9 −1.19693
\(537\) 0 0
\(538\) 7.72705e9 2.13932
\(539\) 9.43074e8 0.259409
\(540\) 0 0
\(541\) −5.15257e9 −1.39905 −0.699525 0.714608i \(-0.746605\pi\)
−0.699525 + 0.714608i \(0.746605\pi\)
\(542\) 9.88131e9 2.66573
\(543\) 0 0
\(544\) −1.76922e9 −0.471179
\(545\) −8.07925e8 −0.213788
\(546\) 0 0
\(547\) −6.96991e8 −0.182084 −0.0910420 0.995847i \(-0.529020\pi\)
−0.0910420 + 0.995847i \(0.529020\pi\)
\(548\) −2.43040e9 −0.630877
\(549\) 0 0
\(550\) −2.25450e9 −0.577804
\(551\) 9.16386e8 0.233371
\(552\) 0 0
\(553\) −5.76550e8 −0.144977
\(554\) −5.99104e9 −1.49699
\(555\) 0 0
\(556\) −1.16705e9 −0.287957
\(557\) −2.88908e9 −0.708381 −0.354191 0.935173i \(-0.615244\pi\)
−0.354191 + 0.935173i \(0.615244\pi\)
\(558\) 0 0
\(559\) 1.29394e9 0.313310
\(560\) −1.31026e8 −0.0315282
\(561\) 0 0
\(562\) −8.18022e9 −1.94396
\(563\) 5.01488e9 1.18435 0.592176 0.805809i \(-0.298269\pi\)
0.592176 + 0.805809i \(0.298269\pi\)
\(564\) 0 0
\(565\) 1.85416e9 0.432492
\(566\) −1.47933e9 −0.342931
\(567\) 0 0
\(568\) −3.51565e9 −0.804982
\(569\) −1.91122e9 −0.434929 −0.217464 0.976068i \(-0.569779\pi\)
−0.217464 + 0.976068i \(0.569779\pi\)
\(570\) 0 0
\(571\) 3.73938e8 0.0840568 0.0420284 0.999116i \(-0.486618\pi\)
0.0420284 + 0.999116i \(0.486618\pi\)
\(572\) −2.80605e9 −0.626916
\(573\) 0 0
\(574\) 2.20993e9 0.487739
\(575\) 1.21406e9 0.266320
\(576\) 0 0
\(577\) 1.91539e9 0.415089 0.207545 0.978226i \(-0.433453\pi\)
0.207545 + 0.978226i \(0.433453\pi\)
\(578\) 6.12869e9 1.32014
\(579\) 0 0
\(580\) −3.81568e9 −0.812033
\(581\) −1.22709e9 −0.259573
\(582\) 0 0
\(583\) −1.05970e9 −0.221484
\(584\) −7.28510e9 −1.51353
\(585\) 0 0
\(586\) 6.68608e9 1.37256
\(587\) 4.10449e9 0.837578 0.418789 0.908084i \(-0.362455\pi\)
0.418789 + 0.908084i \(0.362455\pi\)
\(588\) 0 0
\(589\) 1.82404e9 0.367816
\(590\) 5.95941e9 1.19460
\(591\) 0 0
\(592\) 1.32514e9 0.262503
\(593\) 3.09117e9 0.608740 0.304370 0.952554i \(-0.401554\pi\)
0.304370 + 0.952554i \(0.401554\pi\)
\(594\) 0 0
\(595\) −3.58349e8 −0.0697424
\(596\) 6.09541e9 1.17935
\(597\) 0 0
\(598\) 2.49790e9 0.477662
\(599\) 9.69612e9 1.84333 0.921667 0.387982i \(-0.126828\pi\)
0.921667 + 0.387982i \(0.126828\pi\)
\(600\) 0 0
\(601\) 2.12239e9 0.398808 0.199404 0.979917i \(-0.436099\pi\)
0.199404 + 0.979917i \(0.436099\pi\)
\(602\) 4.47301e9 0.835627
\(603\) 0 0
\(604\) −2.80815e9 −0.518550
\(605\) 5.59614e9 1.02741
\(606\) 0 0
\(607\) 2.11212e9 0.383316 0.191658 0.981462i \(-0.438613\pi\)
0.191658 + 0.981462i \(0.438613\pi\)
\(608\) −1.24553e9 −0.224745
\(609\) 0 0
\(610\) −1.87983e9 −0.335323
\(611\) 3.13122e8 0.0555352
\(612\) 0 0
\(613\) −2.41937e9 −0.424220 −0.212110 0.977246i \(-0.568034\pi\)
−0.212110 + 0.977246i \(0.568034\pi\)
\(614\) 8.27916e9 1.44343
\(615\) 0 0
\(616\) −3.36537e9 −0.580097
\(617\) 3.53370e9 0.605664 0.302832 0.953044i \(-0.402068\pi\)
0.302832 + 0.953044i \(0.402068\pi\)
\(618\) 0 0
\(619\) −1.71721e8 −0.0291009 −0.0145505 0.999894i \(-0.504632\pi\)
−0.0145505 + 0.999894i \(0.504632\pi\)
\(620\) −7.59500e9 −1.27984
\(621\) 0 0
\(622\) −8.90951e9 −1.48452
\(623\) 2.14541e9 0.355469
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) −6.47399e9 −1.05478
\(627\) 0 0
\(628\) −1.13890e10 −1.83496
\(629\) 3.62418e9 0.580674
\(630\) 0 0
\(631\) −1.02893e10 −1.63036 −0.815180 0.579208i \(-0.803362\pi\)
−0.815180 + 0.579208i \(0.803362\pi\)
\(632\) 2.05743e9 0.324201
\(633\) 0 0
\(634\) 3.32895e9 0.518794
\(635\) 1.68780e9 0.261584
\(636\) 0 0
\(637\) −2.10121e8 −0.0322093
\(638\) 2.24717e10 3.42581
\(639\) 0 0
\(640\) 4.30603e9 0.649303
\(641\) −1.10606e10 −1.65873 −0.829363 0.558710i \(-0.811297\pi\)
−0.829363 + 0.558710i \(0.811297\pi\)
\(642\) 0 0
\(643\) −1.75155e9 −0.259827 −0.129913 0.991525i \(-0.541470\pi\)
−0.129913 + 0.991525i \(0.541470\pi\)
\(644\) 5.22362e9 0.770674
\(645\) 0 0
\(646\) −8.85212e8 −0.129191
\(647\) −3.04738e8 −0.0442346 −0.0221173 0.999755i \(-0.507041\pi\)
−0.0221173 + 0.999755i \(0.507041\pi\)
\(648\) 0 0
\(649\) −2.12314e10 −3.04875
\(650\) 5.02312e8 0.0717426
\(651\) 0 0
\(652\) −4.62568e9 −0.653596
\(653\) −1.91092e9 −0.268562 −0.134281 0.990943i \(-0.542873\pi\)
−0.134281 + 0.990943i \(0.542873\pi\)
\(654\) 0 0
\(655\) −1.53088e9 −0.212861
\(656\) 1.09387e9 0.151287
\(657\) 0 0
\(658\) 1.08243e9 0.148118
\(659\) −2.66917e9 −0.363310 −0.181655 0.983362i \(-0.558145\pi\)
−0.181655 + 0.983362i \(0.558145\pi\)
\(660\) 0 0
\(661\) −1.20889e9 −0.162810 −0.0814051 0.996681i \(-0.525941\pi\)
−0.0814051 + 0.996681i \(0.525941\pi\)
\(662\) −1.84533e10 −2.47213
\(663\) 0 0
\(664\) 4.37889e9 0.580465
\(665\) −2.52277e8 −0.0332660
\(666\) 0 0
\(667\) −1.21012e10 −1.57902
\(668\) −5.20971e9 −0.676232
\(669\) 0 0
\(670\) −7.84419e9 −1.00760
\(671\) 6.69719e9 0.855783
\(672\) 0 0
\(673\) 2.65330e9 0.335531 0.167766 0.985827i \(-0.446345\pi\)
0.167766 + 0.985827i \(0.446345\pi\)
\(674\) −2.03531e10 −2.56048
\(675\) 0 0
\(676\) −1.16735e10 −1.45341
\(677\) −9.29262e9 −1.15101 −0.575504 0.817799i \(-0.695194\pi\)
−0.575504 + 0.817799i \(0.695194\pi\)
\(678\) 0 0
\(679\) −1.80317e9 −0.221051
\(680\) 1.27877e9 0.155960
\(681\) 0 0
\(682\) 4.47293e10 5.39941
\(683\) −1.52018e10 −1.82567 −0.912837 0.408325i \(-0.866113\pi\)
−0.912837 + 0.408325i \(0.866113\pi\)
\(684\) 0 0
\(685\) −1.55000e9 −0.184253
\(686\) −7.26365e8 −0.0859054
\(687\) 0 0
\(688\) 2.21405e9 0.259195
\(689\) 2.36106e8 0.0275004
\(690\) 0 0
\(691\) 3.49520e9 0.402994 0.201497 0.979489i \(-0.435419\pi\)
0.201497 + 0.979489i \(0.435419\pi\)
\(692\) 1.39095e10 1.59566
\(693\) 0 0
\(694\) 1.13189e10 1.28542
\(695\) −7.44292e8 −0.0841000
\(696\) 0 0
\(697\) 2.99168e9 0.334657
\(698\) −1.62984e10 −1.81406
\(699\) 0 0
\(700\) 1.05044e9 0.115752
\(701\) 1.34756e10 1.47752 0.738761 0.673968i \(-0.235411\pi\)
0.738761 + 0.673968i \(0.235411\pi\)
\(702\) 0 0
\(703\) 2.55141e9 0.276972
\(704\) −2.74073e10 −2.96048
\(705\) 0 0
\(706\) −2.04944e9 −0.219189
\(707\) −5.15356e9 −0.548453
\(708\) 0 0
\(709\) −1.37164e10 −1.44537 −0.722683 0.691179i \(-0.757092\pi\)
−0.722683 + 0.691179i \(0.757092\pi\)
\(710\) −6.46258e9 −0.677645
\(711\) 0 0
\(712\) −7.65591e9 −0.794908
\(713\) −2.40870e10 −2.48868
\(714\) 0 0
\(715\) −1.78957e9 −0.183096
\(716\) −2.25520e10 −2.29610
\(717\) 0 0
\(718\) 4.88977e9 0.493006
\(719\) −1.52367e10 −1.52876 −0.764378 0.644768i \(-0.776954\pi\)
−0.764378 + 0.644768i \(0.776954\pi\)
\(720\) 0 0
\(721\) −5.49026e9 −0.545531
\(722\) 1.54665e10 1.52937
\(723\) 0 0
\(724\) −4.43138e8 −0.0433964
\(725\) −2.43347e9 −0.237161
\(726\) 0 0
\(727\) 8.49661e9 0.820116 0.410058 0.912059i \(-0.365508\pi\)
0.410058 + 0.912059i \(0.365508\pi\)
\(728\) 7.49820e8 0.0720273
\(729\) 0 0
\(730\) −1.33917e10 −1.27411
\(731\) 6.05530e9 0.573357
\(732\) 0 0
\(733\) 1.02983e10 0.965828 0.482914 0.875668i \(-0.339578\pi\)
0.482914 + 0.875668i \(0.339578\pi\)
\(734\) −2.43167e10 −2.26970
\(735\) 0 0
\(736\) 1.64475e10 1.52065
\(737\) 2.79462e10 2.57150
\(738\) 0 0
\(739\) 2.01922e10 1.84047 0.920235 0.391367i \(-0.127998\pi\)
0.920235 + 0.391367i \(0.127998\pi\)
\(740\) −1.06236e10 −0.963746
\(741\) 0 0
\(742\) 8.16190e8 0.0733462
\(743\) −1.20966e10 −1.08194 −0.540971 0.841042i \(-0.681943\pi\)
−0.540971 + 0.841042i \(0.681943\pi\)
\(744\) 0 0
\(745\) 3.88738e9 0.344437
\(746\) 1.97581e10 1.74245
\(747\) 0 0
\(748\) −1.31316e10 −1.14726
\(749\) −1.81826e9 −0.158114
\(750\) 0 0
\(751\) −3.49566e9 −0.301154 −0.150577 0.988598i \(-0.548113\pi\)
−0.150577 + 0.988598i \(0.548113\pi\)
\(752\) 5.35778e8 0.0459433
\(753\) 0 0
\(754\) −5.00679e9 −0.425363
\(755\) −1.79091e9 −0.151446
\(756\) 0 0
\(757\) 1.27420e10 1.06758 0.533792 0.845616i \(-0.320767\pi\)
0.533792 + 0.845616i \(0.320767\pi\)
\(758\) 7.76765e9 0.647810
\(759\) 0 0
\(760\) 9.00252e8 0.0743903
\(761\) −5.66077e9 −0.465617 −0.232809 0.972523i \(-0.574792\pi\)
−0.232809 + 0.972523i \(0.574792\pi\)
\(762\) 0 0
\(763\) −2.21695e9 −0.180684
\(764\) 1.58199e10 1.28344
\(765\) 0 0
\(766\) 9.52772e9 0.765928
\(767\) 4.73045e9 0.378546
\(768\) 0 0
\(769\) 1.39747e10 1.10816 0.554078 0.832465i \(-0.313071\pi\)
0.554078 + 0.832465i \(0.313071\pi\)
\(770\) −6.18635e9 −0.488334
\(771\) 0 0
\(772\) 1.38756e10 1.08540
\(773\) 1.26246e10 0.983083 0.491541 0.870854i \(-0.336434\pi\)
0.491541 + 0.870854i \(0.336434\pi\)
\(774\) 0 0
\(775\) −4.84375e9 −0.373788
\(776\) 6.43463e9 0.494320
\(777\) 0 0
\(778\) −2.28618e8 −0.0174053
\(779\) 2.10613e9 0.159626
\(780\) 0 0
\(781\) 2.30240e10 1.72943
\(782\) 1.16895e10 0.874122
\(783\) 0 0
\(784\) −3.59535e8 −0.0266462
\(785\) −7.26339e9 −0.535915
\(786\) 0 0
\(787\) −2.29786e10 −1.68040 −0.840199 0.542278i \(-0.817562\pi\)
−0.840199 + 0.542278i \(0.817562\pi\)
\(788\) −1.47681e10 −1.07518
\(789\) 0 0
\(790\) 3.78203e9 0.272917
\(791\) 5.08782e9 0.365523
\(792\) 0 0
\(793\) −1.49216e9 −0.106258
\(794\) 3.49356e10 2.47683
\(795\) 0 0
\(796\) −3.08828e10 −2.17030
\(797\) −5.78646e8 −0.0404864 −0.0202432 0.999795i \(-0.506444\pi\)
−0.0202432 + 0.999795i \(0.506444\pi\)
\(798\) 0 0
\(799\) 1.46532e9 0.101630
\(800\) 3.30750e9 0.228394
\(801\) 0 0
\(802\) 2.32803e10 1.59360
\(803\) 4.77103e10 3.25168
\(804\) 0 0
\(805\) 3.33139e9 0.225081
\(806\) −9.96588e9 −0.670414
\(807\) 0 0
\(808\) 1.83905e10 1.22646
\(809\) 9.57879e9 0.636050 0.318025 0.948082i \(-0.396980\pi\)
0.318025 + 0.948082i \(0.396980\pi\)
\(810\) 0 0
\(811\) −2.25648e10 −1.48545 −0.742727 0.669595i \(-0.766468\pi\)
−0.742727 + 0.669595i \(0.766468\pi\)
\(812\) −1.04702e10 −0.686293
\(813\) 0 0
\(814\) 6.25659e10 4.06586
\(815\) −2.95005e9 −0.190888
\(816\) 0 0
\(817\) 4.26291e9 0.273482
\(818\) 1.48922e10 0.951311
\(819\) 0 0
\(820\) −8.76958e9 −0.555431
\(821\) 2.33524e10 1.47275 0.736377 0.676572i \(-0.236535\pi\)
0.736377 + 0.676572i \(0.236535\pi\)
\(822\) 0 0
\(823\) −1.48433e10 −0.928180 −0.464090 0.885788i \(-0.653619\pi\)
−0.464090 + 0.885788i \(0.653619\pi\)
\(824\) 1.95920e10 1.21993
\(825\) 0 0
\(826\) 1.63526e10 1.00962
\(827\) 2.18669e10 1.34436 0.672182 0.740386i \(-0.265357\pi\)
0.672182 + 0.740386i \(0.265357\pi\)
\(828\) 0 0
\(829\) −1.60225e10 −0.976764 −0.488382 0.872630i \(-0.662413\pi\)
−0.488382 + 0.872630i \(0.662413\pi\)
\(830\) 8.04943e9 0.488643
\(831\) 0 0
\(832\) 6.10646e9 0.367585
\(833\) −9.83310e8 −0.0589431
\(834\) 0 0
\(835\) −3.32252e9 −0.197499
\(836\) −9.24456e9 −0.547223
\(837\) 0 0
\(838\) −3.03855e10 −1.78366
\(839\) 7.37475e9 0.431102 0.215551 0.976493i \(-0.430845\pi\)
0.215551 + 0.976493i \(0.430845\pi\)
\(840\) 0 0
\(841\) 7.00569e9 0.406130
\(842\) −2.24411e10 −1.29555
\(843\) 0 0
\(844\) −4.35352e10 −2.49254
\(845\) −7.44484e9 −0.424480
\(846\) 0 0
\(847\) 1.53558e10 0.868321
\(848\) 4.03997e8 0.0227506
\(849\) 0 0
\(850\) 2.35069e9 0.131289
\(851\) −3.36921e10 −1.87402
\(852\) 0 0
\(853\) 2.99861e10 1.65424 0.827119 0.562027i \(-0.189978\pi\)
0.827119 + 0.562027i \(0.189978\pi\)
\(854\) −5.15824e9 −0.283400
\(855\) 0 0
\(856\) 6.48848e9 0.353578
\(857\) −3.07594e10 −1.66934 −0.834671 0.550749i \(-0.814342\pi\)
−0.834671 + 0.550749i \(0.814342\pi\)
\(858\) 0 0
\(859\) −1.66508e10 −0.896312 −0.448156 0.893955i \(-0.647919\pi\)
−0.448156 + 0.893955i \(0.647919\pi\)
\(860\) −1.77501e10 −0.951601
\(861\) 0 0
\(862\) 2.55252e10 1.35736
\(863\) −1.98562e10 −1.05162 −0.525809 0.850603i \(-0.676237\pi\)
−0.525809 + 0.850603i \(0.676237\pi\)
\(864\) 0 0
\(865\) 8.87088e9 0.466026
\(866\) −3.79916e10 −1.98781
\(867\) 0 0
\(868\) −2.08407e10 −1.08167
\(869\) −1.34741e10 −0.696516
\(870\) 0 0
\(871\) −6.22655e9 −0.319289
\(872\) 7.91120e9 0.404050
\(873\) 0 0
\(874\) 8.22936e9 0.416943
\(875\) 6.69922e8 0.0338062
\(876\) 0 0
\(877\) −6.35922e9 −0.318350 −0.159175 0.987250i \(-0.550883\pi\)
−0.159175 + 0.987250i \(0.550883\pi\)
\(878\) 4.38548e10 2.18669
\(879\) 0 0
\(880\) −3.06211e9 −0.151472
\(881\) 1.37251e10 0.676237 0.338118 0.941104i \(-0.390210\pi\)
0.338118 + 0.941104i \(0.390210\pi\)
\(882\) 0 0
\(883\) 2.43465e9 0.119007 0.0595036 0.998228i \(-0.481048\pi\)
0.0595036 + 0.998228i \(0.481048\pi\)
\(884\) 2.92577e9 0.142448
\(885\) 0 0
\(886\) 3.91678e10 1.89196
\(887\) 3.32171e10 1.59819 0.799097 0.601202i \(-0.205311\pi\)
0.799097 + 0.601202i \(0.205311\pi\)
\(888\) 0 0
\(889\) 4.63131e9 0.221079
\(890\) −1.40734e10 −0.669164
\(891\) 0 0
\(892\) 2.74821e10 1.29650
\(893\) 1.03158e9 0.0484757
\(894\) 0 0
\(895\) −1.43827e10 −0.670593
\(896\) 1.18158e10 0.548761
\(897\) 0 0
\(898\) −7.00106e9 −0.322624
\(899\) 4.82800e10 2.21620
\(900\) 0 0
\(901\) 1.10491e9 0.0503258
\(902\) 5.16467e10 2.34326
\(903\) 0 0
\(904\) −1.81560e10 −0.817391
\(905\) −2.82613e8 −0.0126743
\(906\) 0 0
\(907\) −1.71277e10 −0.762210 −0.381105 0.924532i \(-0.624456\pi\)
−0.381105 + 0.924532i \(0.624456\pi\)
\(908\) 2.22388e10 0.985850
\(909\) 0 0
\(910\) 1.37835e9 0.0606336
\(911\) −3.08592e10 −1.35229 −0.676146 0.736768i \(-0.736351\pi\)
−0.676146 + 0.736768i \(0.736351\pi\)
\(912\) 0 0
\(913\) −2.86774e10 −1.24707
\(914\) 7.15718e10 3.10049
\(915\) 0 0
\(916\) −1.96235e10 −0.843613
\(917\) −4.20074e9 −0.179901
\(918\) 0 0
\(919\) 1.23061e10 0.523018 0.261509 0.965201i \(-0.415780\pi\)
0.261509 + 0.965201i \(0.415780\pi\)
\(920\) −1.18881e10 −0.503333
\(921\) 0 0
\(922\) 6.51096e10 2.73581
\(923\) −5.12986e9 −0.214733
\(924\) 0 0
\(925\) −6.77528e9 −0.281469
\(926\) −4.33839e10 −1.79552
\(927\) 0 0
\(928\) −3.29675e10 −1.35415
\(929\) 2.84458e10 1.16403 0.582013 0.813179i \(-0.302265\pi\)
0.582013 + 0.813179i \(0.302265\pi\)
\(930\) 0 0
\(931\) −6.92247e8 −0.0281149
\(932\) 7.29246e10 2.95065
\(933\) 0 0
\(934\) 3.16760e10 1.27208
\(935\) −8.37472e9 −0.335065
\(936\) 0 0
\(937\) −4.08626e10 −1.62270 −0.811349 0.584562i \(-0.801266\pi\)
−0.811349 + 0.584562i \(0.801266\pi\)
\(938\) −2.15245e10 −0.851574
\(939\) 0 0
\(940\) −4.29534e9 −0.168675
\(941\) −1.52622e10 −0.597108 −0.298554 0.954393i \(-0.596504\pi\)
−0.298554 + 0.954393i \(0.596504\pi\)
\(942\) 0 0
\(943\) −2.78121e10 −1.08005
\(944\) 8.09421e9 0.313164
\(945\) 0 0
\(946\) 1.04536e11 4.01462
\(947\) 2.32859e10 0.890980 0.445490 0.895287i \(-0.353030\pi\)
0.445490 + 0.895287i \(0.353030\pi\)
\(948\) 0 0
\(949\) −1.06301e10 −0.403742
\(950\) 1.65487e9 0.0626228
\(951\) 0 0
\(952\) 3.50896e9 0.131810
\(953\) −2.98085e10 −1.11562 −0.557809 0.829970i \(-0.688358\pi\)
−0.557809 + 0.829970i \(0.688358\pi\)
\(954\) 0 0
\(955\) 1.00892e10 0.374839
\(956\) 1.86387e10 0.689942
\(957\) 0 0
\(958\) −7.53835e10 −2.77011
\(959\) −4.25319e9 −0.155722
\(960\) 0 0
\(961\) 6.85874e10 2.49294
\(962\) −1.39400e10 −0.504834
\(963\) 0 0
\(964\) −5.61280e10 −2.01795
\(965\) 8.84924e9 0.317001
\(966\) 0 0
\(967\) −7.13076e9 −0.253596 −0.126798 0.991929i \(-0.540470\pi\)
−0.126798 + 0.991929i \(0.540470\pi\)
\(968\) −5.47974e10 −1.94176
\(969\) 0 0
\(970\) 1.18284e10 0.416125
\(971\) 4.32969e10 1.51771 0.758857 0.651258i \(-0.225758\pi\)
0.758857 + 0.651258i \(0.225758\pi\)
\(972\) 0 0
\(973\) −2.04234e9 −0.0710775
\(974\) 6.58767e10 2.28442
\(975\) 0 0
\(976\) −2.55322e9 −0.0879051
\(977\) −2.77442e10 −0.951789 −0.475895 0.879502i \(-0.657876\pi\)
−0.475895 + 0.879502i \(0.657876\pi\)
\(978\) 0 0
\(979\) 5.01387e10 1.70779
\(980\) 2.88240e9 0.0978280
\(981\) 0 0
\(982\) −6.54505e10 −2.20558
\(983\) 3.01277e9 0.101164 0.0505822 0.998720i \(-0.483892\pi\)
0.0505822 + 0.998720i \(0.483892\pi\)
\(984\) 0 0
\(985\) −9.41842e9 −0.314016
\(986\) −2.34304e10 −0.778415
\(987\) 0 0
\(988\) 2.05973e9 0.0679455
\(989\) −5.62930e10 −1.85041
\(990\) 0 0
\(991\) −2.67845e10 −0.874232 −0.437116 0.899405i \(-0.644000\pi\)
−0.437116 + 0.899405i \(0.644000\pi\)
\(992\) −6.56208e10 −2.13428
\(993\) 0 0
\(994\) −1.77333e10 −0.572714
\(995\) −1.96956e10 −0.633854
\(996\) 0 0
\(997\) −2.46784e10 −0.788649 −0.394325 0.918971i \(-0.629021\pi\)
−0.394325 + 0.918971i \(0.629021\pi\)
\(998\) −1.17332e10 −0.373645
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.8.a.a.1.1 1
3.2 odd 2 105.8.a.b.1.1 1
15.14 odd 2 525.8.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.b.1.1 1 3.2 odd 2
315.8.a.a.1.1 1 1.1 even 1 trivial
525.8.a.a.1.1 1 15.14 odd 2