Properties

Label 315.8.a.a
Level $315$
Weight $8$
Character orbit 315.a
Self dual yes
Analytic conductor $98.401$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,8,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.4012830275\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 18 q^{2} + 196 q^{4} + 125 q^{5} + 343 q^{7} - 1224 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 18 q^{2} + 196 q^{4} + 125 q^{5} + 343 q^{7} - 1224 q^{8} - 2250 q^{10} + 8016 q^{11} - 1786 q^{13} - 6174 q^{14} - 3056 q^{16} - 8358 q^{17} - 5884 q^{19} + 24500 q^{20} - 144288 q^{22} + 77700 q^{23} + 15625 q^{25} + 32148 q^{26} + 67228 q^{28} - 155742 q^{29} - 310000 q^{31} + 211680 q^{32} + 150444 q^{34} + 42875 q^{35} - 433618 q^{37} + 105912 q^{38} - 153000 q^{40} - 357942 q^{41} - 724492 q^{43} + 1571136 q^{44} - 1398600 q^{46} - 175320 q^{47} + 117649 q^{49} - 281250 q^{50} - 350056 q^{52} - 132198 q^{53} + 1002000 q^{55} - 419832 q^{56} + 2803356 q^{58} - 2648628 q^{59} + 835478 q^{61} + 5580000 q^{62} - 3419072 q^{64} - 223250 q^{65} + 3486308 q^{67} - 1638168 q^{68} - 771750 q^{70} + 2872260 q^{71} + 5951882 q^{73} + 7805124 q^{74} - 1153264 q^{76} + 2749488 q^{77} - 1680904 q^{79} - 382000 q^{80} + 6442956 q^{82} - 3577524 q^{83} - 1044750 q^{85} + 13040856 q^{86} - 9811584 q^{88} + 6254826 q^{89} - 612598 q^{91} + 15229200 q^{92} + 3155760 q^{94} - 735500 q^{95} - 5257054 q^{97} - 2117682 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−18.0000 0 196.000 125.000 0 343.000 −1224.00 0 −2250.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.8.a.a 1
3.b odd 2 1 105.8.a.b 1
15.d odd 2 1 525.8.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.8.a.b 1 3.b odd 2 1
315.8.a.a 1 1.a even 1 1 trivial
525.8.a.a 1 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 18 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 18 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 125 \) Copy content Toggle raw display
$7$ \( T - 343 \) Copy content Toggle raw display
$11$ \( T - 8016 \) Copy content Toggle raw display
$13$ \( T + 1786 \) Copy content Toggle raw display
$17$ \( T + 8358 \) Copy content Toggle raw display
$19$ \( T + 5884 \) Copy content Toggle raw display
$23$ \( T - 77700 \) Copy content Toggle raw display
$29$ \( T + 155742 \) Copy content Toggle raw display
$31$ \( T + 310000 \) Copy content Toggle raw display
$37$ \( T + 433618 \) Copy content Toggle raw display
$41$ \( T + 357942 \) Copy content Toggle raw display
$43$ \( T + 724492 \) Copy content Toggle raw display
$47$ \( T + 175320 \) Copy content Toggle raw display
$53$ \( T + 132198 \) Copy content Toggle raw display
$59$ \( T + 2648628 \) Copy content Toggle raw display
$61$ \( T - 835478 \) Copy content Toggle raw display
$67$ \( T - 3486308 \) Copy content Toggle raw display
$71$ \( T - 2872260 \) Copy content Toggle raw display
$73$ \( T - 5951882 \) Copy content Toggle raw display
$79$ \( T + 1680904 \) Copy content Toggle raw display
$83$ \( T + 3577524 \) Copy content Toggle raw display
$89$ \( T - 6254826 \) Copy content Toggle raw display
$97$ \( T + 5257054 \) Copy content Toggle raw display
show more
show less