Properties

Label 315.6.a.c.1.2
Level $315$
Weight $6$
Character 315.1
Self dual yes
Analytic conductor $50.521$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,6,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.5209032411\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.53113\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.53113 q^{2} -19.5311 q^{4} +25.0000 q^{5} -49.0000 q^{7} -181.963 q^{8} +88.2782 q^{10} +691.520 q^{11} -502.150 q^{13} -173.025 q^{14} -17.5389 q^{16} +991.313 q^{17} +661.677 q^{19} -488.278 q^{20} +2441.84 q^{22} -3415.08 q^{23} +625.000 q^{25} -1773.16 q^{26} +957.025 q^{28} -6751.92 q^{29} -3922.76 q^{31} +5760.89 q^{32} +3500.46 q^{34} -1225.00 q^{35} +627.222 q^{37} +2336.47 q^{38} -4549.08 q^{40} -16277.9 q^{41} -17277.7 q^{43} -13506.2 q^{44} -12059.1 q^{46} +4295.47 q^{47} +2401.00 q^{49} +2206.96 q^{50} +9807.55 q^{52} +25960.9 q^{53} +17288.0 q^{55} +8916.19 q^{56} -23841.9 q^{58} -8902.63 q^{59} -48924.6 q^{61} -13851.8 q^{62} +20903.7 q^{64} -12553.7 q^{65} -4257.80 q^{67} -19361.5 q^{68} -4325.63 q^{70} -18990.9 q^{71} +10132.5 q^{73} +2214.80 q^{74} -12923.3 q^{76} -33884.5 q^{77} -96986.5 q^{79} -438.472 q^{80} -57479.2 q^{82} -70732.1 q^{83} +24782.8 q^{85} -61009.8 q^{86} -125831. q^{88} -4241.12 q^{89} +24605.3 q^{91} +66700.3 q^{92} +15167.9 q^{94} +16541.9 q^{95} -104376. q^{97} +8478.24 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 31 q^{4} + 50 q^{5} - 98 q^{7} + 15 q^{8} - 25 q^{10} + 601 q^{11} - 577 q^{13} + 49 q^{14} - 543 q^{16} - 41 q^{17} + 630 q^{19} - 775 q^{20} + 2852 q^{22} + 442 q^{23} + 1250 q^{25} - 1434 q^{26}+ \cdots - 2401 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.53113 0.624221 0.312111 0.950046i \(-0.398964\pi\)
0.312111 + 0.950046i \(0.398964\pi\)
\(3\) 0 0
\(4\) −19.5311 −0.610348
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) −181.963 −1.00521
\(9\) 0 0
\(10\) 88.2782 0.279160
\(11\) 691.520 1.72315 0.861574 0.507632i \(-0.169479\pi\)
0.861574 + 0.507632i \(0.169479\pi\)
\(12\) 0 0
\(13\) −502.150 −0.824091 −0.412045 0.911163i \(-0.635185\pi\)
−0.412045 + 0.911163i \(0.635185\pi\)
\(14\) −173.025 −0.235933
\(15\) 0 0
\(16\) −17.5389 −0.0171278
\(17\) 991.313 0.831934 0.415967 0.909380i \(-0.363443\pi\)
0.415967 + 0.909380i \(0.363443\pi\)
\(18\) 0 0
\(19\) 661.677 0.420496 0.210248 0.977648i \(-0.432573\pi\)
0.210248 + 0.977648i \(0.432573\pi\)
\(20\) −488.278 −0.272956
\(21\) 0 0
\(22\) 2441.84 1.07563
\(23\) −3415.08 −1.34611 −0.673056 0.739592i \(-0.735019\pi\)
−0.673056 + 0.739592i \(0.735019\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −1773.16 −0.514415
\(27\) 0 0
\(28\) 957.025 0.230690
\(29\) −6751.92 −1.49084 −0.745422 0.666593i \(-0.767752\pi\)
−0.745422 + 0.666593i \(0.767752\pi\)
\(30\) 0 0
\(31\) −3922.76 −0.733142 −0.366571 0.930390i \(-0.619468\pi\)
−0.366571 + 0.930390i \(0.619468\pi\)
\(32\) 5760.89 0.994522
\(33\) 0 0
\(34\) 3500.46 0.519311
\(35\) −1225.00 −0.169031
\(36\) 0 0
\(37\) 627.222 0.0753212 0.0376606 0.999291i \(-0.488009\pi\)
0.0376606 + 0.999291i \(0.488009\pi\)
\(38\) 2336.47 0.262483
\(39\) 0 0
\(40\) −4549.08 −0.449545
\(41\) −16277.9 −1.51230 −0.756149 0.654399i \(-0.772922\pi\)
−0.756149 + 0.654399i \(0.772922\pi\)
\(42\) 0 0
\(43\) −17277.7 −1.42500 −0.712500 0.701672i \(-0.752437\pi\)
−0.712500 + 0.701672i \(0.752437\pi\)
\(44\) −13506.2 −1.05172
\(45\) 0 0
\(46\) −12059.1 −0.840272
\(47\) 4295.47 0.283639 0.141820 0.989893i \(-0.454705\pi\)
0.141820 + 0.989893i \(0.454705\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 2206.96 0.124844
\(51\) 0 0
\(52\) 9807.55 0.502982
\(53\) 25960.9 1.26949 0.634745 0.772721i \(-0.281105\pi\)
0.634745 + 0.772721i \(0.281105\pi\)
\(54\) 0 0
\(55\) 17288.0 0.770615
\(56\) 8916.19 0.379935
\(57\) 0 0
\(58\) −23841.9 −0.930616
\(59\) −8902.63 −0.332957 −0.166479 0.986045i \(-0.553240\pi\)
−0.166479 + 0.986045i \(0.553240\pi\)
\(60\) 0 0
\(61\) −48924.6 −1.68346 −0.841730 0.539898i \(-0.818463\pi\)
−0.841730 + 0.539898i \(0.818463\pi\)
\(62\) −13851.8 −0.457643
\(63\) 0 0
\(64\) 20903.7 0.637930
\(65\) −12553.7 −0.368545
\(66\) 0 0
\(67\) −4257.80 −0.115877 −0.0579387 0.998320i \(-0.518453\pi\)
−0.0579387 + 0.998320i \(0.518453\pi\)
\(68\) −19361.5 −0.507769
\(69\) 0 0
\(70\) −4325.63 −0.105513
\(71\) −18990.9 −0.447095 −0.223547 0.974693i \(-0.571764\pi\)
−0.223547 + 0.974693i \(0.571764\pi\)
\(72\) 0 0
\(73\) 10132.5 0.222541 0.111270 0.993790i \(-0.464508\pi\)
0.111270 + 0.993790i \(0.464508\pi\)
\(74\) 2214.80 0.0470171
\(75\) 0 0
\(76\) −12923.3 −0.256649
\(77\) −33884.5 −0.651289
\(78\) 0 0
\(79\) −96986.5 −1.74841 −0.874205 0.485557i \(-0.838617\pi\)
−0.874205 + 0.485557i \(0.838617\pi\)
\(80\) −438.472 −0.00765979
\(81\) 0 0
\(82\) −57479.2 −0.944009
\(83\) −70732.1 −1.12699 −0.563497 0.826118i \(-0.690544\pi\)
−0.563497 + 0.826118i \(0.690544\pi\)
\(84\) 0 0
\(85\) 24782.8 0.372052
\(86\) −61009.8 −0.889515
\(87\) 0 0
\(88\) −125831. −1.73213
\(89\) −4241.12 −0.0567552 −0.0283776 0.999597i \(-0.509034\pi\)
−0.0283776 + 0.999597i \(0.509034\pi\)
\(90\) 0 0
\(91\) 24605.3 0.311477
\(92\) 66700.3 0.821596
\(93\) 0 0
\(94\) 15167.9 0.177054
\(95\) 16541.9 0.188052
\(96\) 0 0
\(97\) −104376. −1.12634 −0.563170 0.826341i \(-0.690418\pi\)
−0.563170 + 0.826341i \(0.690418\pi\)
\(98\) 8478.24 0.0891745
\(99\) 0 0
\(100\) −12207.0 −0.122070
\(101\) 45715.1 0.445919 0.222959 0.974828i \(-0.428428\pi\)
0.222959 + 0.974828i \(0.428428\pi\)
\(102\) 0 0
\(103\) 89278.1 0.829186 0.414593 0.910007i \(-0.363924\pi\)
0.414593 + 0.910007i \(0.363924\pi\)
\(104\) 91372.7 0.828387
\(105\) 0 0
\(106\) 91671.2 0.792443
\(107\) 106330. 0.897834 0.448917 0.893573i \(-0.351810\pi\)
0.448917 + 0.893573i \(0.351810\pi\)
\(108\) 0 0
\(109\) −49816.5 −0.401613 −0.200806 0.979631i \(-0.564356\pi\)
−0.200806 + 0.979631i \(0.564356\pi\)
\(110\) 61046.1 0.481035
\(111\) 0 0
\(112\) 859.405 0.00647370
\(113\) 37160.7 0.273771 0.136886 0.990587i \(-0.456291\pi\)
0.136886 + 0.990587i \(0.456291\pi\)
\(114\) 0 0
\(115\) −85377.0 −0.601999
\(116\) 131873. 0.909933
\(117\) 0 0
\(118\) −31436.3 −0.207839
\(119\) −48574.4 −0.314441
\(120\) 0 0
\(121\) 317148. 1.96924
\(122\) −172759. −1.05085
\(123\) 0 0
\(124\) 76616.0 0.447471
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −46510.2 −0.255882 −0.127941 0.991782i \(-0.540837\pi\)
−0.127941 + 0.991782i \(0.540837\pi\)
\(128\) −110535. −0.596313
\(129\) 0 0
\(130\) −44328.9 −0.230053
\(131\) −381771. −1.94368 −0.971839 0.235646i \(-0.924279\pi\)
−0.971839 + 0.235646i \(0.924279\pi\)
\(132\) 0 0
\(133\) −32422.2 −0.158933
\(134\) −15034.9 −0.0723331
\(135\) 0 0
\(136\) −180382. −0.836271
\(137\) 1894.54 0.00862389 0.00431194 0.999991i \(-0.498627\pi\)
0.00431194 + 0.999991i \(0.498627\pi\)
\(138\) 0 0
\(139\) 201798. 0.885889 0.442944 0.896549i \(-0.353934\pi\)
0.442944 + 0.896549i \(0.353934\pi\)
\(140\) 23925.6 0.103168
\(141\) 0 0
\(142\) −67059.3 −0.279086
\(143\) −347246. −1.42003
\(144\) 0 0
\(145\) −168798. −0.666726
\(146\) 35779.1 0.138915
\(147\) 0 0
\(148\) −12250.4 −0.0459721
\(149\) 466237. 1.72045 0.860224 0.509917i \(-0.170324\pi\)
0.860224 + 0.509917i \(0.170324\pi\)
\(150\) 0 0
\(151\) −122212. −0.436185 −0.218093 0.975928i \(-0.569983\pi\)
−0.218093 + 0.975928i \(0.569983\pi\)
\(152\) −120401. −0.422688
\(153\) 0 0
\(154\) −119650. −0.406548
\(155\) −98069.1 −0.327871
\(156\) 0 0
\(157\) −410638. −1.32957 −0.664784 0.747036i \(-0.731476\pi\)
−0.664784 + 0.747036i \(0.731476\pi\)
\(158\) −342472. −1.09139
\(159\) 0 0
\(160\) 144022. 0.444764
\(161\) 167339. 0.508782
\(162\) 0 0
\(163\) 78525.4 0.231495 0.115747 0.993279i \(-0.463074\pi\)
0.115747 + 0.993279i \(0.463074\pi\)
\(164\) 317925. 0.923028
\(165\) 0 0
\(166\) −249764. −0.703494
\(167\) 597714. 1.65845 0.829224 0.558916i \(-0.188783\pi\)
0.829224 + 0.558916i \(0.188783\pi\)
\(168\) 0 0
\(169\) −119139. −0.320875
\(170\) 87511.4 0.232243
\(171\) 0 0
\(172\) 337453. 0.869745
\(173\) 59874.0 0.152098 0.0760490 0.997104i \(-0.475769\pi\)
0.0760490 + 0.997104i \(0.475769\pi\)
\(174\) 0 0
\(175\) −30625.0 −0.0755929
\(176\) −12128.5 −0.0295138
\(177\) 0 0
\(178\) −14975.9 −0.0354278
\(179\) −616812. −1.43887 −0.719433 0.694562i \(-0.755598\pi\)
−0.719433 + 0.694562i \(0.755598\pi\)
\(180\) 0 0
\(181\) −37287.0 −0.0845981 −0.0422990 0.999105i \(-0.513468\pi\)
−0.0422990 + 0.999105i \(0.513468\pi\)
\(182\) 86884.6 0.194431
\(183\) 0 0
\(184\) 621418. 1.35313
\(185\) 15680.6 0.0336847
\(186\) 0 0
\(187\) 685513. 1.43355
\(188\) −83895.4 −0.173119
\(189\) 0 0
\(190\) 58411.7 0.117386
\(191\) −326760. −0.648106 −0.324053 0.946039i \(-0.605046\pi\)
−0.324053 + 0.946039i \(0.605046\pi\)
\(192\) 0 0
\(193\) −265735. −0.513518 −0.256759 0.966475i \(-0.582655\pi\)
−0.256759 + 0.966475i \(0.582655\pi\)
\(194\) −368563. −0.703085
\(195\) 0 0
\(196\) −46894.2 −0.0871925
\(197\) 517865. 0.950716 0.475358 0.879792i \(-0.342318\pi\)
0.475358 + 0.879792i \(0.342318\pi\)
\(198\) 0 0
\(199\) −148687. −0.266158 −0.133079 0.991105i \(-0.542486\pi\)
−0.133079 + 0.991105i \(0.542486\pi\)
\(200\) −113727. −0.201043
\(201\) 0 0
\(202\) 161426. 0.278352
\(203\) 330844. 0.563486
\(204\) 0 0
\(205\) −406946. −0.676320
\(206\) 315252. 0.517595
\(207\) 0 0
\(208\) 8807.15 0.0141149
\(209\) 457563. 0.724577
\(210\) 0 0
\(211\) 7443.09 0.0115093 0.00575463 0.999983i \(-0.498168\pi\)
0.00575463 + 0.999983i \(0.498168\pi\)
\(212\) −507045. −0.774831
\(213\) 0 0
\(214\) 375465. 0.560447
\(215\) −431943. −0.637279
\(216\) 0 0
\(217\) 192215. 0.277101
\(218\) −175909. −0.250695
\(219\) 0 0
\(220\) −337654. −0.470343
\(221\) −497788. −0.685589
\(222\) 0 0
\(223\) 119157. 0.160456 0.0802280 0.996777i \(-0.474435\pi\)
0.0802280 + 0.996777i \(0.474435\pi\)
\(224\) −282283. −0.375894
\(225\) 0 0
\(226\) 131219. 0.170894
\(227\) 388843. 0.500852 0.250426 0.968136i \(-0.419429\pi\)
0.250426 + 0.968136i \(0.419429\pi\)
\(228\) 0 0
\(229\) 732622. 0.923191 0.461595 0.887091i \(-0.347277\pi\)
0.461595 + 0.887091i \(0.347277\pi\)
\(230\) −301477. −0.375781
\(231\) 0 0
\(232\) 1.22860e6 1.49862
\(233\) 1.12639e6 1.35925 0.679626 0.733559i \(-0.262142\pi\)
0.679626 + 0.733559i \(0.262142\pi\)
\(234\) 0 0
\(235\) 107387. 0.126847
\(236\) 173878. 0.203220
\(237\) 0 0
\(238\) −171522. −0.196281
\(239\) −772317. −0.874583 −0.437292 0.899320i \(-0.644062\pi\)
−0.437292 + 0.899320i \(0.644062\pi\)
\(240\) 0 0
\(241\) 1.40297e6 1.55598 0.777991 0.628275i \(-0.216239\pi\)
0.777991 + 0.628275i \(0.216239\pi\)
\(242\) 1.11989e6 1.22924
\(243\) 0 0
\(244\) 955553. 1.02750
\(245\) 60025.0 0.0638877
\(246\) 0 0
\(247\) −332261. −0.346527
\(248\) 713798. 0.736964
\(249\) 0 0
\(250\) 55173.9 0.0558320
\(251\) 1.63922e6 1.64230 0.821151 0.570712i \(-0.193333\pi\)
0.821151 + 0.570712i \(0.193333\pi\)
\(252\) 0 0
\(253\) −2.36159e6 −2.31955
\(254\) −164234. −0.159727
\(255\) 0 0
\(256\) −1.05923e6 −1.01016
\(257\) 223664. 0.211234 0.105617 0.994407i \(-0.466318\pi\)
0.105617 + 0.994407i \(0.466318\pi\)
\(258\) 0 0
\(259\) −30733.9 −0.0284687
\(260\) 245189. 0.224940
\(261\) 0 0
\(262\) −1.34808e6 −1.21329
\(263\) −299519. −0.267014 −0.133507 0.991048i \(-0.542624\pi\)
−0.133507 + 0.991048i \(0.542624\pi\)
\(264\) 0 0
\(265\) 649022. 0.567734
\(266\) −114487. −0.0992091
\(267\) 0 0
\(268\) 83159.7 0.0707255
\(269\) −134341. −0.113195 −0.0565974 0.998397i \(-0.518025\pi\)
−0.0565974 + 0.998397i \(0.518025\pi\)
\(270\) 0 0
\(271\) 1.93414e6 1.59980 0.799898 0.600136i \(-0.204887\pi\)
0.799898 + 0.600136i \(0.204887\pi\)
\(272\) −17386.5 −0.0142492
\(273\) 0 0
\(274\) 6689.88 0.00538321
\(275\) 432200. 0.344630
\(276\) 0 0
\(277\) 177599. 0.139072 0.0695362 0.997579i \(-0.477848\pi\)
0.0695362 + 0.997579i \(0.477848\pi\)
\(278\) 712574. 0.552991
\(279\) 0 0
\(280\) 222905. 0.169912
\(281\) −1.85131e6 −1.39867 −0.699333 0.714796i \(-0.746519\pi\)
−0.699333 + 0.714796i \(0.746519\pi\)
\(282\) 0 0
\(283\) 2.39851e6 1.78023 0.890114 0.455737i \(-0.150624\pi\)
0.890114 + 0.455737i \(0.150624\pi\)
\(284\) 370914. 0.272883
\(285\) 0 0
\(286\) −1.22617e6 −0.886413
\(287\) 797615. 0.571595
\(288\) 0 0
\(289\) −437155. −0.307887
\(290\) −596047. −0.416184
\(291\) 0 0
\(292\) −197899. −0.135827
\(293\) −2.49922e6 −1.70073 −0.850364 0.526196i \(-0.823618\pi\)
−0.850364 + 0.526196i \(0.823618\pi\)
\(294\) 0 0
\(295\) −222566. −0.148903
\(296\) −114131. −0.0757139
\(297\) 0 0
\(298\) 1.64634e6 1.07394
\(299\) 1.71488e6 1.10932
\(300\) 0 0
\(301\) 846607. 0.538599
\(302\) −431546. −0.272276
\(303\) 0 0
\(304\) −11605.1 −0.00720218
\(305\) −1.22312e6 −0.752866
\(306\) 0 0
\(307\) 3.07195e6 1.86024 0.930119 0.367258i \(-0.119703\pi\)
0.930119 + 0.367258i \(0.119703\pi\)
\(308\) 661802. 0.397513
\(309\) 0 0
\(310\) −346295. −0.204664
\(311\) −661233. −0.387662 −0.193831 0.981035i \(-0.562091\pi\)
−0.193831 + 0.981035i \(0.562091\pi\)
\(312\) 0 0
\(313\) −3.29393e6 −1.90043 −0.950217 0.311588i \(-0.899139\pi\)
−0.950217 + 0.311588i \(0.899139\pi\)
\(314\) −1.45002e6 −0.829944
\(315\) 0 0
\(316\) 1.89426e6 1.06714
\(317\) −639724. −0.357556 −0.178778 0.983889i \(-0.557214\pi\)
−0.178778 + 0.983889i \(0.557214\pi\)
\(318\) 0 0
\(319\) −4.66908e6 −2.56894
\(320\) 522592. 0.285291
\(321\) 0 0
\(322\) 590895. 0.317593
\(323\) 655929. 0.349825
\(324\) 0 0
\(325\) −313844. −0.164818
\(326\) 277283. 0.144504
\(327\) 0 0
\(328\) 2.96197e6 1.52018
\(329\) −210478. −0.107206
\(330\) 0 0
\(331\) −1.13876e6 −0.571298 −0.285649 0.958334i \(-0.592209\pi\)
−0.285649 + 0.958334i \(0.592209\pi\)
\(332\) 1.38148e6 0.687858
\(333\) 0 0
\(334\) 2.11060e6 1.03524
\(335\) −106445. −0.0518219
\(336\) 0 0
\(337\) 685493. 0.328797 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(338\) −420694. −0.200297
\(339\) 0 0
\(340\) −484037. −0.227081
\(341\) −2.71267e6 −1.26331
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 3.14390e6 1.43243
\(345\) 0 0
\(346\) 211423. 0.0949428
\(347\) 1.25151e6 0.557970 0.278985 0.960295i \(-0.410002\pi\)
0.278985 + 0.960295i \(0.410002\pi\)
\(348\) 0 0
\(349\) −3.16606e6 −1.39141 −0.695706 0.718327i \(-0.744908\pi\)
−0.695706 + 0.718327i \(0.744908\pi\)
\(350\) −108141. −0.0471867
\(351\) 0 0
\(352\) 3.98376e6 1.71371
\(353\) 2.43368e6 1.03951 0.519754 0.854316i \(-0.326024\pi\)
0.519754 + 0.854316i \(0.326024\pi\)
\(354\) 0 0
\(355\) −474772. −0.199947
\(356\) 82833.8 0.0346404
\(357\) 0 0
\(358\) −2.17804e6 −0.898171
\(359\) 2.13021e6 0.872341 0.436170 0.899864i \(-0.356335\pi\)
0.436170 + 0.899864i \(0.356335\pi\)
\(360\) 0 0
\(361\) −2.03828e6 −0.823183
\(362\) −131665. −0.0528079
\(363\) 0 0
\(364\) −480570. −0.190109
\(365\) 253312. 0.0995232
\(366\) 0 0
\(367\) −3.10976e6 −1.20521 −0.602604 0.798041i \(-0.705870\pi\)
−0.602604 + 0.798041i \(0.705870\pi\)
\(368\) 59896.7 0.0230559
\(369\) 0 0
\(370\) 55370.1 0.0210267
\(371\) −1.27208e6 −0.479822
\(372\) 0 0
\(373\) −3.15189e6 −1.17300 −0.586502 0.809948i \(-0.699495\pi\)
−0.586502 + 0.809948i \(0.699495\pi\)
\(374\) 2.42063e6 0.894849
\(375\) 0 0
\(376\) −781617. −0.285118
\(377\) 3.39047e6 1.22859
\(378\) 0 0
\(379\) 342350. 0.122426 0.0612129 0.998125i \(-0.480503\pi\)
0.0612129 + 0.998125i \(0.480503\pi\)
\(380\) −323083. −0.114777
\(381\) 0 0
\(382\) −1.15383e6 −0.404562
\(383\) −3.69387e6 −1.28672 −0.643361 0.765563i \(-0.722461\pi\)
−0.643361 + 0.765563i \(0.722461\pi\)
\(384\) 0 0
\(385\) −847111. −0.291265
\(386\) −938345. −0.320549
\(387\) 0 0
\(388\) 2.03857e6 0.687459
\(389\) −2.05313e6 −0.687928 −0.343964 0.938983i \(-0.611770\pi\)
−0.343964 + 0.938983i \(0.611770\pi\)
\(390\) 0 0
\(391\) −3.38541e6 −1.11988
\(392\) −436893. −0.143602
\(393\) 0 0
\(394\) 1.82865e6 0.593457
\(395\) −2.42466e6 −0.781913
\(396\) 0 0
\(397\) −2.28107e6 −0.726377 −0.363189 0.931716i \(-0.618312\pi\)
−0.363189 + 0.931716i \(0.618312\pi\)
\(398\) −525031. −0.166141
\(399\) 0 0
\(400\) −10961.8 −0.00342556
\(401\) −3.32082e6 −1.03130 −0.515649 0.856800i \(-0.672449\pi\)
−0.515649 + 0.856800i \(0.672449\pi\)
\(402\) 0 0
\(403\) 1.96981e6 0.604175
\(404\) −892867. −0.272166
\(405\) 0 0
\(406\) 1.16825e6 0.351740
\(407\) 433737. 0.129790
\(408\) 0 0
\(409\) 5.15938e6 1.52507 0.762534 0.646948i \(-0.223955\pi\)
0.762534 + 0.646948i \(0.223955\pi\)
\(410\) −1.43698e6 −0.422174
\(411\) 0 0
\(412\) −1.74370e6 −0.506092
\(413\) 436229. 0.125846
\(414\) 0 0
\(415\) −1.76830e6 −0.504007
\(416\) −2.89283e6 −0.819576
\(417\) 0 0
\(418\) 1.61571e6 0.452297
\(419\) 4.85187e6 1.35012 0.675062 0.737761i \(-0.264117\pi\)
0.675062 + 0.737761i \(0.264117\pi\)
\(420\) 0 0
\(421\) −6.14767e6 −1.69046 −0.845231 0.534401i \(-0.820537\pi\)
−0.845231 + 0.534401i \(0.820537\pi\)
\(422\) 26282.5 0.00718432
\(423\) 0 0
\(424\) −4.72392e6 −1.27611
\(425\) 619571. 0.166387
\(426\) 0 0
\(427\) 2.39731e6 0.636288
\(428\) −2.07674e6 −0.547991
\(429\) 0 0
\(430\) −1.52524e6 −0.397803
\(431\) −3.55411e6 −0.921590 −0.460795 0.887507i \(-0.652436\pi\)
−0.460795 + 0.887507i \(0.652436\pi\)
\(432\) 0 0
\(433\) 2.82650e6 0.724485 0.362243 0.932084i \(-0.382011\pi\)
0.362243 + 0.932084i \(0.382011\pi\)
\(434\) 678737. 0.172973
\(435\) 0 0
\(436\) 972973. 0.245123
\(437\) −2.25968e6 −0.566035
\(438\) 0 0
\(439\) 4.64410e6 1.15011 0.575056 0.818114i \(-0.304980\pi\)
0.575056 + 0.818114i \(0.304980\pi\)
\(440\) −3.14578e6 −0.774633
\(441\) 0 0
\(442\) −1.75775e6 −0.427959
\(443\) 6.15534e6 1.49019 0.745097 0.666957i \(-0.232403\pi\)
0.745097 + 0.666957i \(0.232403\pi\)
\(444\) 0 0
\(445\) −106028. −0.0253817
\(446\) 420757. 0.100160
\(447\) 0 0
\(448\) −1.02428e6 −0.241115
\(449\) −3.67035e6 −0.859196 −0.429598 0.903020i \(-0.641345\pi\)
−0.429598 + 0.903020i \(0.641345\pi\)
\(450\) 0 0
\(451\) −1.12565e7 −2.60591
\(452\) −725791. −0.167096
\(453\) 0 0
\(454\) 1.37305e6 0.312642
\(455\) 615134. 0.139297
\(456\) 0 0
\(457\) −866327. −0.194040 −0.0970201 0.995282i \(-0.530931\pi\)
−0.0970201 + 0.995282i \(0.530931\pi\)
\(458\) 2.58698e6 0.576275
\(459\) 0 0
\(460\) 1.66751e6 0.367429
\(461\) 1.88572e6 0.413261 0.206631 0.978419i \(-0.433750\pi\)
0.206631 + 0.978419i \(0.433750\pi\)
\(462\) 0 0
\(463\) −8.49017e6 −1.84062 −0.920309 0.391192i \(-0.872063\pi\)
−0.920309 + 0.391192i \(0.872063\pi\)
\(464\) 118421. 0.0255349
\(465\) 0 0
\(466\) 3.97744e6 0.848474
\(467\) −1.82738e6 −0.387737 −0.193868 0.981028i \(-0.562104\pi\)
−0.193868 + 0.981028i \(0.562104\pi\)
\(468\) 0 0
\(469\) 208632. 0.0437975
\(470\) 379197. 0.0791808
\(471\) 0 0
\(472\) 1.61995e6 0.334693
\(473\) −1.19479e7 −2.45549
\(474\) 0 0
\(475\) 413548. 0.0840992
\(476\) 948712. 0.191919
\(477\) 0 0
\(478\) −2.72715e6 −0.545933
\(479\) −4.68744e6 −0.933463 −0.466731 0.884399i \(-0.654568\pi\)
−0.466731 + 0.884399i \(0.654568\pi\)
\(480\) 0 0
\(481\) −314960. −0.0620715
\(482\) 4.95405e6 0.971277
\(483\) 0 0
\(484\) −6.19426e6 −1.20192
\(485\) −2.60939e6 −0.503714
\(486\) 0 0
\(487\) 4.59651e6 0.878225 0.439112 0.898432i \(-0.355293\pi\)
0.439112 + 0.898432i \(0.355293\pi\)
\(488\) 8.90247e6 1.69224
\(489\) 0 0
\(490\) 211956. 0.0398800
\(491\) −6.62099e6 −1.23942 −0.619711 0.784830i \(-0.712750\pi\)
−0.619711 + 0.784830i \(0.712750\pi\)
\(492\) 0 0
\(493\) −6.69327e6 −1.24028
\(494\) −1.17326e6 −0.216310
\(495\) 0 0
\(496\) 68800.9 0.0125571
\(497\) 930554. 0.168986
\(498\) 0 0
\(499\) −4.52632e6 −0.813756 −0.406878 0.913482i \(-0.633383\pi\)
−0.406878 + 0.913482i \(0.633383\pi\)
\(500\) −305174. −0.0545912
\(501\) 0 0
\(502\) 5.78829e6 1.02516
\(503\) −3.83316e6 −0.675518 −0.337759 0.941233i \(-0.609669\pi\)
−0.337759 + 0.941233i \(0.609669\pi\)
\(504\) 0 0
\(505\) 1.14288e6 0.199421
\(506\) −8.33909e6 −1.44791
\(507\) 0 0
\(508\) 908397. 0.156177
\(509\) 3.25460e6 0.556806 0.278403 0.960464i \(-0.410195\pi\)
0.278403 + 0.960464i \(0.410195\pi\)
\(510\) 0 0
\(511\) −496492. −0.0841124
\(512\) −203165. −0.0342511
\(513\) 0 0
\(514\) 789788. 0.131857
\(515\) 2.23195e6 0.370823
\(516\) 0 0
\(517\) 2.97040e6 0.488752
\(518\) −108525. −0.0177708
\(519\) 0 0
\(520\) 2.28432e6 0.370466
\(521\) 1.07842e6 0.174057 0.0870287 0.996206i \(-0.472263\pi\)
0.0870287 + 0.996206i \(0.472263\pi\)
\(522\) 0 0
\(523\) 408626. 0.0653238 0.0326619 0.999466i \(-0.489602\pi\)
0.0326619 + 0.999466i \(0.489602\pi\)
\(524\) 7.45641e6 1.18632
\(525\) 0 0
\(526\) −1.05764e6 −0.166676
\(527\) −3.88869e6 −0.609925
\(528\) 0 0
\(529\) 5.22642e6 0.812016
\(530\) 2.29178e6 0.354391
\(531\) 0 0
\(532\) 633242. 0.0970042
\(533\) 8.17392e6 1.24627
\(534\) 0 0
\(535\) 2.65825e6 0.401524
\(536\) 774763. 0.116481
\(537\) 0 0
\(538\) −474374. −0.0706586
\(539\) 1.66034e6 0.246164
\(540\) 0 0
\(541\) 1.13918e7 1.67340 0.836701 0.547659i \(-0.184481\pi\)
0.836701 + 0.547659i \(0.184481\pi\)
\(542\) 6.82970e6 0.998627
\(543\) 0 0
\(544\) 5.71084e6 0.827376
\(545\) −1.24541e6 −0.179607
\(546\) 0 0
\(547\) −3.44866e6 −0.492813 −0.246406 0.969167i \(-0.579250\pi\)
−0.246406 + 0.969167i \(0.579250\pi\)
\(548\) −37002.6 −0.00526357
\(549\) 0 0
\(550\) 1.52615e6 0.215125
\(551\) −4.46759e6 −0.626894
\(552\) 0 0
\(553\) 4.75234e6 0.660837
\(554\) 627124. 0.0868119
\(555\) 0 0
\(556\) −3.94134e6 −0.540700
\(557\) 4.69772e6 0.641577 0.320789 0.947151i \(-0.396052\pi\)
0.320789 + 0.947151i \(0.396052\pi\)
\(558\) 0 0
\(559\) 8.67599e6 1.17433
\(560\) 21485.1 0.00289513
\(561\) 0 0
\(562\) −6.53722e6 −0.873077
\(563\) 561642. 0.0746772 0.0373386 0.999303i \(-0.488112\pi\)
0.0373386 + 0.999303i \(0.488112\pi\)
\(564\) 0 0
\(565\) 929018. 0.122434
\(566\) 8.46945e6 1.11126
\(567\) 0 0
\(568\) 3.45564e6 0.449426
\(569\) −5.19019e6 −0.672051 −0.336026 0.941853i \(-0.609083\pi\)
−0.336026 + 0.941853i \(0.609083\pi\)
\(570\) 0 0
\(571\) −5.20274e6 −0.667793 −0.333897 0.942610i \(-0.608364\pi\)
−0.333897 + 0.942610i \(0.608364\pi\)
\(572\) 6.78211e6 0.866712
\(573\) 0 0
\(574\) 2.81648e6 0.356802
\(575\) −2.13442e6 −0.269222
\(576\) 0 0
\(577\) 8.70662e6 1.08870 0.544352 0.838857i \(-0.316775\pi\)
0.544352 + 0.838857i \(0.316775\pi\)
\(578\) −1.54365e6 −0.192189
\(579\) 0 0
\(580\) 3.29681e6 0.406934
\(581\) 3.46588e6 0.425964
\(582\) 0 0
\(583\) 1.79524e7 2.18752
\(584\) −1.84374e6 −0.223701
\(585\) 0 0
\(586\) −8.82505e6 −1.06163
\(587\) 4.35717e6 0.521926 0.260963 0.965349i \(-0.415960\pi\)
0.260963 + 0.965349i \(0.415960\pi\)
\(588\) 0 0
\(589\) −2.59560e6 −0.308283
\(590\) −785908. −0.0929484
\(591\) 0 0
\(592\) −11000.8 −0.00129009
\(593\) 3.22991e6 0.377184 0.188592 0.982055i \(-0.439608\pi\)
0.188592 + 0.982055i \(0.439608\pi\)
\(594\) 0 0
\(595\) −1.21436e6 −0.140622
\(596\) −9.10614e6 −1.05007
\(597\) 0 0
\(598\) 6.05547e6 0.692460
\(599\) 7.23988e6 0.824450 0.412225 0.911082i \(-0.364752\pi\)
0.412225 + 0.911082i \(0.364752\pi\)
\(600\) 0 0
\(601\) −1.06837e7 −1.20652 −0.603262 0.797543i \(-0.706133\pi\)
−0.603262 + 0.797543i \(0.706133\pi\)
\(602\) 2.98948e6 0.336205
\(603\) 0 0
\(604\) 2.38693e6 0.266225
\(605\) 7.92871e6 0.880671
\(606\) 0 0
\(607\) 2.51528e6 0.277086 0.138543 0.990356i \(-0.455758\pi\)
0.138543 + 0.990356i \(0.455758\pi\)
\(608\) 3.81185e6 0.418193
\(609\) 0 0
\(610\) −4.31898e6 −0.469955
\(611\) −2.15697e6 −0.233744
\(612\) 0 0
\(613\) 213999. 0.0230017 0.0115009 0.999934i \(-0.496339\pi\)
0.0115009 + 0.999934i \(0.496339\pi\)
\(614\) 1.08475e7 1.16120
\(615\) 0 0
\(616\) 6.16572e6 0.654684
\(617\) 127951. 0.0135310 0.00676552 0.999977i \(-0.497846\pi\)
0.00676552 + 0.999977i \(0.497846\pi\)
\(618\) 0 0
\(619\) −1.23980e7 −1.30054 −0.650272 0.759701i \(-0.725345\pi\)
−0.650272 + 0.759701i \(0.725345\pi\)
\(620\) 1.91540e6 0.200115
\(621\) 0 0
\(622\) −2.33490e6 −0.241987
\(623\) 207815. 0.0214514
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −1.16313e7 −1.18629
\(627\) 0 0
\(628\) 8.02023e6 0.811499
\(629\) 621774. 0.0626622
\(630\) 0 0
\(631\) −5.87683e6 −0.587584 −0.293792 0.955869i \(-0.594917\pi\)
−0.293792 + 0.955869i \(0.594917\pi\)
\(632\) 1.76480e7 1.75753
\(633\) 0 0
\(634\) −2.25895e6 −0.223194
\(635\) −1.16275e6 −0.114434
\(636\) 0 0
\(637\) −1.20566e6 −0.117727
\(638\) −1.64871e7 −1.60359
\(639\) 0 0
\(640\) −2.76337e6 −0.266679
\(641\) 2.60122e6 0.250053 0.125026 0.992153i \(-0.460098\pi\)
0.125026 + 0.992153i \(0.460098\pi\)
\(642\) 0 0
\(643\) 1.31345e7 1.25282 0.626408 0.779495i \(-0.284524\pi\)
0.626408 + 0.779495i \(0.284524\pi\)
\(644\) −3.26832e6 −0.310534
\(645\) 0 0
\(646\) 2.31617e6 0.218368
\(647\) −5.54662e6 −0.520916 −0.260458 0.965485i \(-0.583874\pi\)
−0.260458 + 0.965485i \(0.583874\pi\)
\(648\) 0 0
\(649\) −6.15634e6 −0.573734
\(650\) −1.10822e6 −0.102883
\(651\) 0 0
\(652\) −1.53369e6 −0.141292
\(653\) 1.54993e7 1.42242 0.711212 0.702978i \(-0.248147\pi\)
0.711212 + 0.702978i \(0.248147\pi\)
\(654\) 0 0
\(655\) −9.54427e6 −0.869239
\(656\) 285495. 0.0259024
\(657\) 0 0
\(658\) −743225. −0.0669200
\(659\) 4.30145e6 0.385835 0.192917 0.981215i \(-0.438205\pi\)
0.192917 + 0.981215i \(0.438205\pi\)
\(660\) 0 0
\(661\) 861980. 0.0767350 0.0383675 0.999264i \(-0.487784\pi\)
0.0383675 + 0.999264i \(0.487784\pi\)
\(662\) −4.02111e6 −0.356616
\(663\) 0 0
\(664\) 1.28706e7 1.13287
\(665\) −810554. −0.0710768
\(666\) 0 0
\(667\) 2.30583e7 2.00684
\(668\) −1.16740e7 −1.01223
\(669\) 0 0
\(670\) −375871. −0.0323484
\(671\) −3.38323e7 −2.90085
\(672\) 0 0
\(673\) −953818. −0.0811760 −0.0405880 0.999176i \(-0.512923\pi\)
−0.0405880 + 0.999176i \(0.512923\pi\)
\(674\) 2.42056e6 0.205242
\(675\) 0 0
\(676\) 2.32691e6 0.195845
\(677\) 1.48606e7 1.24613 0.623065 0.782170i \(-0.285887\pi\)
0.623065 + 0.782170i \(0.285887\pi\)
\(678\) 0 0
\(679\) 5.11440e6 0.425716
\(680\) −4.50956e6 −0.373992
\(681\) 0 0
\(682\) −9.57878e6 −0.788586
\(683\) 1.57605e7 1.29276 0.646381 0.763015i \(-0.276282\pi\)
0.646381 + 0.763015i \(0.276282\pi\)
\(684\) 0 0
\(685\) 47363.6 0.00385672
\(686\) −415434. −0.0337048
\(687\) 0 0
\(688\) 303032. 0.0244071
\(689\) −1.30362e7 −1.04618
\(690\) 0 0
\(691\) 1.59740e7 1.27267 0.636337 0.771411i \(-0.280449\pi\)
0.636337 + 0.771411i \(0.280449\pi\)
\(692\) −1.16941e6 −0.0928326
\(693\) 0 0
\(694\) 4.41925e6 0.348297
\(695\) 5.04494e6 0.396182
\(696\) 0 0
\(697\) −1.61365e7 −1.25813
\(698\) −1.11798e7 −0.868549
\(699\) 0 0
\(700\) 598141. 0.0461380
\(701\) 1.85736e7 1.42758 0.713790 0.700360i \(-0.246977\pi\)
0.713790 + 0.700360i \(0.246977\pi\)
\(702\) 0 0
\(703\) 415019. 0.0316723
\(704\) 1.44553e7 1.09925
\(705\) 0 0
\(706\) 8.59365e6 0.648883
\(707\) −2.24004e6 −0.168541
\(708\) 0 0
\(709\) −1.71029e7 −1.27778 −0.638888 0.769300i \(-0.720605\pi\)
−0.638888 + 0.769300i \(0.720605\pi\)
\(710\) −1.67648e6 −0.124811
\(711\) 0 0
\(712\) 771727. 0.0570511
\(713\) 1.33965e7 0.986890
\(714\) 0 0
\(715\) −8.68116e6 −0.635057
\(716\) 1.20470e7 0.878208
\(717\) 0 0
\(718\) 7.52204e6 0.544534
\(719\) 1.40945e7 1.01678 0.508390 0.861127i \(-0.330241\pi\)
0.508390 + 0.861127i \(0.330241\pi\)
\(720\) 0 0
\(721\) −4.37463e6 −0.313403
\(722\) −7.19744e6 −0.513848
\(723\) 0 0
\(724\) 728256. 0.0516343
\(725\) −4.21995e6 −0.298169
\(726\) 0 0
\(727\) 2.24196e7 1.57323 0.786616 0.617443i \(-0.211831\pi\)
0.786616 + 0.617443i \(0.211831\pi\)
\(728\) −4.47726e6 −0.313101
\(729\) 0 0
\(730\) 894478. 0.0621245
\(731\) −1.71276e7 −1.18551
\(732\) 0 0
\(733\) −8.02464e6 −0.551653 −0.275826 0.961208i \(-0.588951\pi\)
−0.275826 + 0.961208i \(0.588951\pi\)
\(734\) −1.09810e7 −0.752316
\(735\) 0 0
\(736\) −1.96739e7 −1.33874
\(737\) −2.94435e6 −0.199674
\(738\) 0 0
\(739\) 1.15678e7 0.779181 0.389591 0.920988i \(-0.372616\pi\)
0.389591 + 0.920988i \(0.372616\pi\)
\(740\) −306259. −0.0205594
\(741\) 0 0
\(742\) −4.49189e6 −0.299515
\(743\) −3.79387e6 −0.252122 −0.126061 0.992023i \(-0.540233\pi\)
−0.126061 + 0.992023i \(0.540233\pi\)
\(744\) 0 0
\(745\) 1.16559e7 0.769407
\(746\) −1.11297e7 −0.732214
\(747\) 0 0
\(748\) −1.33888e7 −0.874961
\(749\) −5.21017e6 −0.339349
\(750\) 0 0
\(751\) −9.07884e6 −0.587395 −0.293698 0.955898i \(-0.594886\pi\)
−0.293698 + 0.955898i \(0.594886\pi\)
\(752\) −75337.8 −0.00485812
\(753\) 0 0
\(754\) 1.19722e7 0.766912
\(755\) −3.05530e6 −0.195068
\(756\) 0 0
\(757\) −2.33210e7 −1.47913 −0.739565 0.673085i \(-0.764969\pi\)
−0.739565 + 0.673085i \(0.764969\pi\)
\(758\) 1.20888e6 0.0764208
\(759\) 0 0
\(760\) −3.01002e6 −0.189032
\(761\) −1.44859e7 −0.906745 −0.453373 0.891321i \(-0.649779\pi\)
−0.453373 + 0.891321i \(0.649779\pi\)
\(762\) 0 0
\(763\) 2.44101e6 0.151795
\(764\) 6.38200e6 0.395570
\(765\) 0 0
\(766\) −1.30435e7 −0.803200
\(767\) 4.47045e6 0.274387
\(768\) 0 0
\(769\) 1.59424e7 0.972162 0.486081 0.873914i \(-0.338426\pi\)
0.486081 + 0.873914i \(0.338426\pi\)
\(770\) −2.99126e6 −0.181814
\(771\) 0 0
\(772\) 5.19011e6 0.313425
\(773\) 3.36066e6 0.202290 0.101145 0.994872i \(-0.467749\pi\)
0.101145 + 0.994872i \(0.467749\pi\)
\(774\) 0 0
\(775\) −2.45173e6 −0.146628
\(776\) 1.89925e7 1.13221
\(777\) 0 0
\(778\) −7.24988e6 −0.429419
\(779\) −1.07707e7 −0.635916
\(780\) 0 0
\(781\) −1.31326e7 −0.770411
\(782\) −1.19543e7 −0.699050
\(783\) 0 0
\(784\) −42110.9 −0.00244683
\(785\) −1.02660e7 −0.594601
\(786\) 0 0
\(787\) −3.28918e6 −0.189300 −0.0946500 0.995511i \(-0.530173\pi\)
−0.0946500 + 0.995511i \(0.530173\pi\)
\(788\) −1.01145e7 −0.580268
\(789\) 0 0
\(790\) −8.56179e6 −0.488087
\(791\) −1.82088e6 −0.103476
\(792\) 0 0
\(793\) 2.45675e7 1.38732
\(794\) −8.05475e6 −0.453420
\(795\) 0 0
\(796\) 2.90402e6 0.162449
\(797\) 2.51939e6 0.140492 0.0702458 0.997530i \(-0.477622\pi\)
0.0702458 + 0.997530i \(0.477622\pi\)
\(798\) 0 0
\(799\) 4.25816e6 0.235969
\(800\) 3.60055e6 0.198904
\(801\) 0 0
\(802\) −1.17262e7 −0.643758
\(803\) 7.00682e6 0.383470
\(804\) 0 0
\(805\) 4.18347e6 0.227534
\(806\) 6.95567e6 0.377139
\(807\) 0 0
\(808\) −8.31845e6 −0.448244
\(809\) −8.93808e6 −0.480146 −0.240073 0.970755i \(-0.577171\pi\)
−0.240073 + 0.970755i \(0.577171\pi\)
\(810\) 0 0
\(811\) 3.01341e7 1.60881 0.804406 0.594080i \(-0.202484\pi\)
0.804406 + 0.594080i \(0.202484\pi\)
\(812\) −6.46176e6 −0.343922
\(813\) 0 0
\(814\) 1.53158e6 0.0810174
\(815\) 1.96313e6 0.103528
\(816\) 0 0
\(817\) −1.14323e7 −0.599207
\(818\) 1.82184e7 0.951980
\(819\) 0 0
\(820\) 7.94812e6 0.412791
\(821\) 3.25440e7 1.68505 0.842524 0.538658i \(-0.181069\pi\)
0.842524 + 0.538658i \(0.181069\pi\)
\(822\) 0 0
\(823\) −499640. −0.0257133 −0.0128566 0.999917i \(-0.504093\pi\)
−0.0128566 + 0.999917i \(0.504093\pi\)
\(824\) −1.62453e7 −0.833509
\(825\) 0 0
\(826\) 1.54038e6 0.0785557
\(827\) 4.64084e6 0.235957 0.117978 0.993016i \(-0.462359\pi\)
0.117978 + 0.993016i \(0.462359\pi\)
\(828\) 0 0
\(829\) −3.08794e7 −1.56057 −0.780283 0.625427i \(-0.784925\pi\)
−0.780283 + 0.625427i \(0.784925\pi\)
\(830\) −6.24411e6 −0.314612
\(831\) 0 0
\(832\) −1.04968e7 −0.525712
\(833\) 2.38014e6 0.118848
\(834\) 0 0
\(835\) 1.49428e7 0.741681
\(836\) −8.93671e6 −0.442244
\(837\) 0 0
\(838\) 1.71326e7 0.842777
\(839\) −1.93485e7 −0.948948 −0.474474 0.880269i \(-0.657362\pi\)
−0.474474 + 0.880269i \(0.657362\pi\)
\(840\) 0 0
\(841\) 2.50772e7 1.22261
\(842\) −2.17082e7 −1.05522
\(843\) 0 0
\(844\) −145372. −0.00702465
\(845\) −2.97846e6 −0.143500
\(846\) 0 0
\(847\) −1.55403e7 −0.744303
\(848\) −455325. −0.0217436
\(849\) 0 0
\(850\) 2.18778e6 0.103862
\(851\) −2.14201e6 −0.101391
\(852\) 0 0
\(853\) −3.05998e7 −1.43994 −0.719972 0.694003i \(-0.755845\pi\)
−0.719972 + 0.694003i \(0.755845\pi\)
\(854\) 8.46520e6 0.397185
\(855\) 0 0
\(856\) −1.93481e7 −0.902515
\(857\) 1.33039e7 0.618766 0.309383 0.950937i \(-0.399877\pi\)
0.309383 + 0.950937i \(0.399877\pi\)
\(858\) 0 0
\(859\) −1.27708e7 −0.590520 −0.295260 0.955417i \(-0.595406\pi\)
−0.295260 + 0.955417i \(0.595406\pi\)
\(860\) 8.43633e6 0.388962
\(861\) 0 0
\(862\) −1.25500e7 −0.575276
\(863\) −1.37987e7 −0.630684 −0.315342 0.948978i \(-0.602119\pi\)
−0.315342 + 0.948978i \(0.602119\pi\)
\(864\) 0 0
\(865\) 1.49685e6 0.0680203
\(866\) 9.98074e6 0.452239
\(867\) 0 0
\(868\) −3.75418e6 −0.169128
\(869\) −6.70680e7 −3.01277
\(870\) 0 0
\(871\) 2.13806e6 0.0954934
\(872\) 9.06477e6 0.403706
\(873\) 0 0
\(874\) −7.97922e6 −0.353331
\(875\) −765625. −0.0338062
\(876\) 0 0
\(877\) 6.68992e6 0.293712 0.146856 0.989158i \(-0.453085\pi\)
0.146856 + 0.989158i \(0.453085\pi\)
\(878\) 1.63989e7 0.717924
\(879\) 0 0
\(880\) −303212. −0.0131990
\(881\) 7.25051e6 0.314723 0.157362 0.987541i \(-0.449701\pi\)
0.157362 + 0.987541i \(0.449701\pi\)
\(882\) 0 0
\(883\) −2.55944e7 −1.10470 −0.552348 0.833613i \(-0.686268\pi\)
−0.552348 + 0.833613i \(0.686268\pi\)
\(884\) 9.72236e6 0.418447
\(885\) 0 0
\(886\) 2.17353e7 0.930210
\(887\) 2.33204e7 0.995240 0.497620 0.867395i \(-0.334207\pi\)
0.497620 + 0.867395i \(0.334207\pi\)
\(888\) 0 0
\(889\) 2.27900e6 0.0967141
\(890\) −374398. −0.0158438
\(891\) 0 0
\(892\) −2.32726e6 −0.0979340
\(893\) 2.84222e6 0.119269
\(894\) 0 0
\(895\) −1.54203e7 −0.643480
\(896\) 5.41620e6 0.225385
\(897\) 0 0
\(898\) −1.29605e7 −0.536328
\(899\) 2.64862e7 1.09300
\(900\) 0 0
\(901\) 2.57354e7 1.05613
\(902\) −3.97480e7 −1.62667
\(903\) 0 0
\(904\) −6.76188e6 −0.275199
\(905\) −932174. −0.0378334
\(906\) 0 0
\(907\) 3.71721e7 1.50037 0.750187 0.661226i \(-0.229964\pi\)
0.750187 + 0.661226i \(0.229964\pi\)
\(908\) −7.59453e6 −0.305694
\(909\) 0 0
\(910\) 2.17212e6 0.0869520
\(911\) 2.89923e7 1.15741 0.578704 0.815537i \(-0.303559\pi\)
0.578704 + 0.815537i \(0.303559\pi\)
\(912\) 0 0
\(913\) −4.89127e7 −1.94198
\(914\) −3.05911e6 −0.121124
\(915\) 0 0
\(916\) −1.43089e7 −0.563468
\(917\) 1.87068e7 0.734641
\(918\) 0 0
\(919\) −1.25020e6 −0.0488306 −0.0244153 0.999702i \(-0.507772\pi\)
−0.0244153 + 0.999702i \(0.507772\pi\)
\(920\) 1.55355e7 0.605138
\(921\) 0 0
\(922\) 6.65872e6 0.257966
\(923\) 9.53627e6 0.368447
\(924\) 0 0
\(925\) 392014. 0.0150642
\(926\) −2.99799e7 −1.14895
\(927\) 0 0
\(928\) −3.88970e7 −1.48268
\(929\) −6.87875e6 −0.261499 −0.130749 0.991415i \(-0.541738\pi\)
−0.130749 + 0.991415i \(0.541738\pi\)
\(930\) 0 0
\(931\) 1.58869e6 0.0600709
\(932\) −2.19997e7 −0.829616
\(933\) 0 0
\(934\) −6.45272e6 −0.242034
\(935\) 1.71378e7 0.641101
\(936\) 0 0
\(937\) 2.18600e7 0.813396 0.406698 0.913563i \(-0.366680\pi\)
0.406698 + 0.913563i \(0.366680\pi\)
\(938\) 736708. 0.0273393
\(939\) 0 0
\(940\) −2.09739e6 −0.0774210
\(941\) −2.26450e6 −0.0833679 −0.0416840 0.999131i \(-0.513272\pi\)
−0.0416840 + 0.999131i \(0.513272\pi\)
\(942\) 0 0
\(943\) 5.55901e7 2.03572
\(944\) 156142. 0.00570283
\(945\) 0 0
\(946\) −4.21895e7 −1.53277
\(947\) 2.45846e7 0.890815 0.445408 0.895328i \(-0.353059\pi\)
0.445408 + 0.895328i \(0.353059\pi\)
\(948\) 0 0
\(949\) −5.08803e6 −0.183394
\(950\) 1.46029e6 0.0524965
\(951\) 0 0
\(952\) 8.83874e6 0.316081
\(953\) −4.59681e7 −1.63955 −0.819774 0.572687i \(-0.805901\pi\)
−0.819774 + 0.572687i \(0.805901\pi\)
\(954\) 0 0
\(955\) −8.16901e6 −0.289842
\(956\) 1.50842e7 0.533800
\(957\) 0 0
\(958\) −1.65520e7 −0.582687
\(959\) −92832.6 −0.00325952
\(960\) 0 0
\(961\) −1.32411e7 −0.462503
\(962\) −1.11216e6 −0.0387463
\(963\) 0 0
\(964\) −2.74015e7 −0.949690
\(965\) −6.64338e6 −0.229652
\(966\) 0 0
\(967\) −5.30202e7 −1.82337 −0.911686 0.410888i \(-0.865219\pi\)
−0.911686 + 0.410888i \(0.865219\pi\)
\(968\) −5.77093e7 −1.97951
\(969\) 0 0
\(970\) −9.21409e6 −0.314429
\(971\) 5.43523e7 1.84999 0.924996 0.379976i \(-0.124068\pi\)
0.924996 + 0.379976i \(0.124068\pi\)
\(972\) 0 0
\(973\) −9.88809e6 −0.334835
\(974\) 1.62309e7 0.548207
\(975\) 0 0
\(976\) 858083. 0.0288340
\(977\) −1.08929e7 −0.365097 −0.182549 0.983197i \(-0.558435\pi\)
−0.182549 + 0.983197i \(0.558435\pi\)
\(978\) 0 0
\(979\) −2.93282e6 −0.0977976
\(980\) −1.17236e6 −0.0389937
\(981\) 0 0
\(982\) −2.33796e7 −0.773674
\(983\) 3.42136e7 1.12932 0.564658 0.825325i \(-0.309008\pi\)
0.564658 + 0.825325i \(0.309008\pi\)
\(984\) 0 0
\(985\) 1.29466e7 0.425173
\(986\) −2.36348e7 −0.774211
\(987\) 0 0
\(988\) 6.48943e6 0.211502
\(989\) 5.90047e7 1.91821
\(990\) 0 0
\(991\) 4.22117e6 0.136537 0.0682683 0.997667i \(-0.478253\pi\)
0.0682683 + 0.997667i \(0.478253\pi\)
\(992\) −2.25986e7 −0.729125
\(993\) 0 0
\(994\) 3.28591e6 0.105485
\(995\) −3.71716e6 −0.119029
\(996\) 0 0
\(997\) 4.30323e7 1.37106 0.685530 0.728044i \(-0.259571\pi\)
0.685530 + 0.728044i \(0.259571\pi\)
\(998\) −1.59830e7 −0.507964
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.6.a.c.1.2 2
3.2 odd 2 35.6.a.b.1.1 2
12.11 even 2 560.6.a.l.1.1 2
15.2 even 4 175.6.b.d.99.2 4
15.8 even 4 175.6.b.d.99.3 4
15.14 odd 2 175.6.a.d.1.2 2
21.20 even 2 245.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.b.1.1 2 3.2 odd 2
175.6.a.d.1.2 2 15.14 odd 2
175.6.b.d.99.2 4 15.2 even 4
175.6.b.d.99.3 4 15.8 even 4
245.6.a.c.1.1 2 21.20 even 2
315.6.a.c.1.2 2 1.1 even 1 trivial
560.6.a.l.1.1 2 12.11 even 2