Properties

Label 315.6.a.c
Level $315$
Weight $6$
Character orbit 315.a
Self dual yes
Analytic conductor $50.521$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,6,Mod(1,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.5209032411\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{65})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + (\beta - 16) q^{4} + 25 q^{5} - 49 q^{7} + (47 \beta - 16) q^{8} - 25 \beta q^{10} + ( - 97 \beta + 349) q^{11} + (53 \beta - 315) q^{13} + 49 \beta q^{14} + ( - 63 \beta - 240) q^{16} + \cdots - 2401 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 31 q^{4} + 50 q^{5} - 98 q^{7} + 15 q^{8} - 25 q^{10} + 601 q^{11} - 577 q^{13} + 49 q^{14} - 543 q^{16} - 41 q^{17} + 630 q^{19} - 775 q^{20} + 2852 q^{22} + 442 q^{23} + 1250 q^{25} - 1434 q^{26}+ \cdots - 2401 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.53113
−3.53113
−4.53113 0 −11.4689 25.0000 0 −49.0000 196.963 0 −113.278
1.2 3.53113 0 −19.5311 25.0000 0 −49.0000 −181.963 0 88.2782
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 315.6.a.c 2
3.b odd 2 1 35.6.a.b 2
12.b even 2 1 560.6.a.l 2
15.d odd 2 1 175.6.a.d 2
15.e even 4 2 175.6.b.d 4
21.c even 2 1 245.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.6.a.b 2 3.b odd 2 1
175.6.a.d 2 15.d odd 2 1
175.6.b.d 4 15.e even 4 2
245.6.a.c 2 21.c even 2 1
315.6.a.c 2 1.a even 1 1 trivial
560.6.a.l 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} - 16 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(315))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 16 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 25)^{2} \) Copy content Toggle raw display
$7$ \( (T + 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 601T - 62596 \) Copy content Toggle raw display
$13$ \( T^{2} + 577T + 37586 \) Copy content Toggle raw display
$17$ \( T^{2} + 41T - 1023346 \) Copy content Toggle raw display
$19$ \( T^{2} - 630T - 20960 \) Copy content Toggle raw display
$23$ \( T^{2} - 442 T - 13172224 \) Copy content Toggle raw display
$29$ \( T^{2} + 5885 T - 5853350 \) Copy content Toggle raw display
$31$ \( T^{2} + 396 T - 13834656 \) Copy content Toggle raw display
$37$ \( T^{2} + 8904 T - 5978196 \) Copy content Toggle raw display
$41$ \( T^{2} + 1774 T - 236091496 \) Copy content Toggle raw display
$43$ \( T^{2} + 27122 T + 170086856 \) Copy content Toggle raw display
$47$ \( T^{2} - 21289 T + 72995224 \) Copy content Toggle raw display
$53$ \( T^{2} - 55582 T + 768990296 \) Copy content Toggle raw display
$59$ \( T^{2} + 59600 T + 451339840 \) Copy content Toggle raw display
$61$ \( T^{2} + 51846 T + 142927344 \) Copy content Toggle raw display
$67$ \( T^{2} + 45344 T + 174936944 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1172746624 \) Copy content Toggle raw display
$73$ \( T^{2} + 13532 T - 239780284 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 4382959400 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2765333536 \) Copy content Toggle raw display
$89$ \( T^{2} - 37650 T - 177665240 \) Copy content Toggle raw display
$97$ \( T^{2} + 96339 T - 838817066 \) Copy content Toggle raw display
show more
show less