Properties

Label 315.6.a.a.1.1
Level $315$
Weight $6$
Character 315.1
Self dual yes
Analytic conductor $50.521$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,6,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.5209032411\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +32.0000 q^{4} -25.0000 q^{5} +49.0000 q^{7} +O(q^{10})\) \(q+8.00000 q^{2} +32.0000 q^{4} -25.0000 q^{5} +49.0000 q^{7} -200.000 q^{10} +453.000 q^{11} -969.000 q^{13} +392.000 q^{14} -1024.00 q^{16} -1637.00 q^{17} -1550.00 q^{19} -800.000 q^{20} +3624.00 q^{22} +1654.00 q^{23} +625.000 q^{25} -7752.00 q^{26} +1568.00 q^{28} +4985.00 q^{29} +1192.00 q^{31} -8192.00 q^{32} -13096.0 q^{34} -1225.00 q^{35} -11018.0 q^{37} -12400.0 q^{38} +1728.00 q^{41} -10814.0 q^{43} +14496.0 q^{44} +13232.0 q^{46} -26237.0 q^{47} +2401.00 q^{49} +5000.00 q^{50} -31008.0 q^{52} -25936.0 q^{53} -11325.0 q^{55} +39880.0 q^{58} +4580.00 q^{59} -12488.0 q^{61} +9536.00 q^{62} -32768.0 q^{64} +24225.0 q^{65} -15848.0 q^{67} -52384.0 q^{68} -9800.00 q^{70} -51792.0 q^{71} +4846.00 q^{73} -88144.0 q^{74} -49600.0 q^{76} +22197.0 q^{77} +62765.0 q^{79} +25600.0 q^{80} +13824.0 q^{82} +23644.0 q^{83} +40925.0 q^{85} -86512.0 q^{86} +147300. q^{89} -47481.0 q^{91} +52928.0 q^{92} -209896. q^{94} +38750.0 q^{95} -8343.00 q^{97} +19208.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) 0 0
\(4\) 32.0000 1.00000
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) −200.000 −0.632456
\(11\) 453.000 1.12880 0.564399 0.825502i \(-0.309108\pi\)
0.564399 + 0.825502i \(0.309108\pi\)
\(12\) 0 0
\(13\) −969.000 −1.59025 −0.795125 0.606446i \(-0.792595\pi\)
−0.795125 + 0.606446i \(0.792595\pi\)
\(14\) 392.000 0.534522
\(15\) 0 0
\(16\) −1024.00 −1.00000
\(17\) −1637.00 −1.37381 −0.686905 0.726748i \(-0.741031\pi\)
−0.686905 + 0.726748i \(0.741031\pi\)
\(18\) 0 0
\(19\) −1550.00 −0.985026 −0.492513 0.870305i \(-0.663922\pi\)
−0.492513 + 0.870305i \(0.663922\pi\)
\(20\) −800.000 −0.447214
\(21\) 0 0
\(22\) 3624.00 1.59636
\(23\) 1654.00 0.651952 0.325976 0.945378i \(-0.394307\pi\)
0.325976 + 0.945378i \(0.394307\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −7752.00 −2.24895
\(27\) 0 0
\(28\) 1568.00 0.377964
\(29\) 4985.00 1.10070 0.550352 0.834933i \(-0.314494\pi\)
0.550352 + 0.834933i \(0.314494\pi\)
\(30\) 0 0
\(31\) 1192.00 0.222778 0.111389 0.993777i \(-0.464470\pi\)
0.111389 + 0.993777i \(0.464470\pi\)
\(32\) −8192.00 −1.41421
\(33\) 0 0
\(34\) −13096.0 −1.94286
\(35\) −1225.00 −0.169031
\(36\) 0 0
\(37\) −11018.0 −1.32312 −0.661559 0.749893i \(-0.730105\pi\)
−0.661559 + 0.749893i \(0.730105\pi\)
\(38\) −12400.0 −1.39304
\(39\) 0 0
\(40\) 0 0
\(41\) 1728.00 0.160540 0.0802702 0.996773i \(-0.474422\pi\)
0.0802702 + 0.996773i \(0.474422\pi\)
\(42\) 0 0
\(43\) −10814.0 −0.891898 −0.445949 0.895058i \(-0.647134\pi\)
−0.445949 + 0.895058i \(0.647134\pi\)
\(44\) 14496.0 1.12880
\(45\) 0 0
\(46\) 13232.0 0.922000
\(47\) −26237.0 −1.73249 −0.866243 0.499624i \(-0.833472\pi\)
−0.866243 + 0.499624i \(0.833472\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 5000.00 0.282843
\(51\) 0 0
\(52\) −31008.0 −1.59025
\(53\) −25936.0 −1.26827 −0.634137 0.773220i \(-0.718645\pi\)
−0.634137 + 0.773220i \(0.718645\pi\)
\(54\) 0 0
\(55\) −11325.0 −0.504814
\(56\) 0 0
\(57\) 0 0
\(58\) 39880.0 1.55663
\(59\) 4580.00 0.171291 0.0856457 0.996326i \(-0.472705\pi\)
0.0856457 + 0.996326i \(0.472705\pi\)
\(60\) 0 0
\(61\) −12488.0 −0.429703 −0.214851 0.976647i \(-0.568927\pi\)
−0.214851 + 0.976647i \(0.568927\pi\)
\(62\) 9536.00 0.315055
\(63\) 0 0
\(64\) −32768.0 −1.00000
\(65\) 24225.0 0.711181
\(66\) 0 0
\(67\) −15848.0 −0.431308 −0.215654 0.976470i \(-0.569188\pi\)
−0.215654 + 0.976470i \(0.569188\pi\)
\(68\) −52384.0 −1.37381
\(69\) 0 0
\(70\) −9800.00 −0.239046
\(71\) −51792.0 −1.21932 −0.609659 0.792664i \(-0.708694\pi\)
−0.609659 + 0.792664i \(0.708694\pi\)
\(72\) 0 0
\(73\) 4846.00 0.106433 0.0532165 0.998583i \(-0.483053\pi\)
0.0532165 + 0.998583i \(0.483053\pi\)
\(74\) −88144.0 −1.87117
\(75\) 0 0
\(76\) −49600.0 −0.985026
\(77\) 22197.0 0.426646
\(78\) 0 0
\(79\) 62765.0 1.13149 0.565744 0.824581i \(-0.308589\pi\)
0.565744 + 0.824581i \(0.308589\pi\)
\(80\) 25600.0 0.447214
\(81\) 0 0
\(82\) 13824.0 0.227038
\(83\) 23644.0 0.376726 0.188363 0.982099i \(-0.439682\pi\)
0.188363 + 0.982099i \(0.439682\pi\)
\(84\) 0 0
\(85\) 40925.0 0.614386
\(86\) −86512.0 −1.26133
\(87\) 0 0
\(88\) 0 0
\(89\) 147300. 1.97119 0.985593 0.169133i \(-0.0540967\pi\)
0.985593 + 0.169133i \(0.0540967\pi\)
\(90\) 0 0
\(91\) −47481.0 −0.601058
\(92\) 52928.0 0.651952
\(93\) 0 0
\(94\) −209896. −2.45010
\(95\) 38750.0 0.440517
\(96\) 0 0
\(97\) −8343.00 −0.0900312 −0.0450156 0.998986i \(-0.514334\pi\)
−0.0450156 + 0.998986i \(0.514334\pi\)
\(98\) 19208.0 0.202031
\(99\) 0 0
\(100\) 20000.0 0.200000
\(101\) 11878.0 0.115862 0.0579308 0.998321i \(-0.481550\pi\)
0.0579308 + 0.998321i \(0.481550\pi\)
\(102\) 0 0
\(103\) −132439. −1.23005 −0.615025 0.788508i \(-0.710854\pi\)
−0.615025 + 0.788508i \(0.710854\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −207488. −1.79361
\(107\) −136842. −1.15547 −0.577737 0.816223i \(-0.696064\pi\)
−0.577737 + 0.816223i \(0.696064\pi\)
\(108\) 0 0
\(109\) 109485. 0.882650 0.441325 0.897347i \(-0.354509\pi\)
0.441325 + 0.897347i \(0.354509\pi\)
\(110\) −90600.0 −0.713915
\(111\) 0 0
\(112\) −50176.0 −0.377964
\(113\) 200934. 1.48033 0.740163 0.672428i \(-0.234748\pi\)
0.740163 + 0.672428i \(0.234748\pi\)
\(114\) 0 0
\(115\) −41350.0 −0.291562
\(116\) 159520. 1.10070
\(117\) 0 0
\(118\) 36640.0 0.242243
\(119\) −80213.0 −0.519251
\(120\) 0 0
\(121\) 44158.0 0.274186
\(122\) −99904.0 −0.607692
\(123\) 0 0
\(124\) 38144.0 0.222778
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 330692. 1.81934 0.909671 0.415329i \(-0.136334\pi\)
0.909671 + 0.415329i \(0.136334\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 193800. 1.00576
\(131\) −43982.0 −0.223922 −0.111961 0.993713i \(-0.535713\pi\)
−0.111961 + 0.993713i \(0.535713\pi\)
\(132\) 0 0
\(133\) −75950.0 −0.372305
\(134\) −126784. −0.609962
\(135\) 0 0
\(136\) 0 0
\(137\) 99748.0 0.454049 0.227025 0.973889i \(-0.427100\pi\)
0.227025 + 0.973889i \(0.427100\pi\)
\(138\) 0 0
\(139\) 258930. 1.13670 0.568349 0.822787i \(-0.307582\pi\)
0.568349 + 0.822787i \(0.307582\pi\)
\(140\) −39200.0 −0.169031
\(141\) 0 0
\(142\) −414336. −1.72438
\(143\) −438957. −1.79507
\(144\) 0 0
\(145\) −124625. −0.492249
\(146\) 38768.0 0.150519
\(147\) 0 0
\(148\) −352576. −1.32312
\(149\) 498430. 1.83924 0.919620 0.392809i \(-0.128497\pi\)
0.919620 + 0.392809i \(0.128497\pi\)
\(150\) 0 0
\(151\) −245803. −0.877293 −0.438647 0.898660i \(-0.644542\pi\)
−0.438647 + 0.898660i \(0.644542\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 177576. 0.603368
\(155\) −29800.0 −0.0996293
\(156\) 0 0
\(157\) −85478.0 −0.276761 −0.138381 0.990379i \(-0.544190\pi\)
−0.138381 + 0.990379i \(0.544190\pi\)
\(158\) 502120. 1.60017
\(159\) 0 0
\(160\) 204800. 0.632456
\(161\) 81046.0 0.246415
\(162\) 0 0
\(163\) 193026. 0.569045 0.284523 0.958669i \(-0.408165\pi\)
0.284523 + 0.958669i \(0.408165\pi\)
\(164\) 55296.0 0.160540
\(165\) 0 0
\(166\) 189152. 0.532771
\(167\) 157783. 0.437793 0.218897 0.975748i \(-0.429754\pi\)
0.218897 + 0.975748i \(0.429754\pi\)
\(168\) 0 0
\(169\) 567668. 1.52889
\(170\) 327400. 0.868873
\(171\) 0 0
\(172\) −346048. −0.891898
\(173\) 265659. 0.674853 0.337427 0.941352i \(-0.390444\pi\)
0.337427 + 0.941352i \(0.390444\pi\)
\(174\) 0 0
\(175\) 30625.0 0.0755929
\(176\) −463872. −1.12880
\(177\) 0 0
\(178\) 1.17840e6 2.78768
\(179\) −183660. −0.428432 −0.214216 0.976786i \(-0.568720\pi\)
−0.214216 + 0.976786i \(0.568720\pi\)
\(180\) 0 0
\(181\) −635048. −1.44082 −0.720411 0.693548i \(-0.756047\pi\)
−0.720411 + 0.693548i \(0.756047\pi\)
\(182\) −379848. −0.850024
\(183\) 0 0
\(184\) 0 0
\(185\) 275450. 0.591716
\(186\) 0 0
\(187\) −741561. −1.55075
\(188\) −839584. −1.73249
\(189\) 0 0
\(190\) 310000. 0.622985
\(191\) 226613. 0.449471 0.224735 0.974420i \(-0.427848\pi\)
0.224735 + 0.974420i \(0.427848\pi\)
\(192\) 0 0
\(193\) 46476.0 0.0898122 0.0449061 0.998991i \(-0.485701\pi\)
0.0449061 + 0.998991i \(0.485701\pi\)
\(194\) −66744.0 −0.127323
\(195\) 0 0
\(196\) 76832.0 0.142857
\(197\) −204972. −0.376295 −0.188148 0.982141i \(-0.560248\pi\)
−0.188148 + 0.982141i \(0.560248\pi\)
\(198\) 0 0
\(199\) −953020. −1.70596 −0.852981 0.521942i \(-0.825208\pi\)
−0.852981 + 0.521942i \(0.825208\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 95024.0 0.163853
\(203\) 244265. 0.416027
\(204\) 0 0
\(205\) −43200.0 −0.0717958
\(206\) −1.05951e6 −1.73955
\(207\) 0 0
\(208\) 992256. 1.59025
\(209\) −702150. −1.11190
\(210\) 0 0
\(211\) −223523. −0.345634 −0.172817 0.984954i \(-0.555287\pi\)
−0.172817 + 0.984954i \(0.555287\pi\)
\(212\) −829952. −1.26827
\(213\) 0 0
\(214\) −1.09474e6 −1.63409
\(215\) 270350. 0.398869
\(216\) 0 0
\(217\) 58408.0 0.0842021
\(218\) 875880. 1.24826
\(219\) 0 0
\(220\) −362400. −0.504814
\(221\) 1.58625e6 2.18470
\(222\) 0 0
\(223\) 1.01480e6 1.36653 0.683264 0.730171i \(-0.260560\pi\)
0.683264 + 0.730171i \(0.260560\pi\)
\(224\) −401408. −0.534522
\(225\) 0 0
\(226\) 1.60747e6 2.09350
\(227\) −999797. −1.28780 −0.643898 0.765111i \(-0.722684\pi\)
−0.643898 + 0.765111i \(0.722684\pi\)
\(228\) 0 0
\(229\) −851120. −1.07251 −0.536256 0.844055i \(-0.680162\pi\)
−0.536256 + 0.844055i \(0.680162\pi\)
\(230\) −330800. −0.412331
\(231\) 0 0
\(232\) 0 0
\(233\) −1.09270e6 −1.31859 −0.659295 0.751885i \(-0.729145\pi\)
−0.659295 + 0.751885i \(0.729145\pi\)
\(234\) 0 0
\(235\) 655925. 0.774791
\(236\) 146560. 0.171291
\(237\) 0 0
\(238\) −641704. −0.734332
\(239\) −765905. −0.867322 −0.433661 0.901076i \(-0.642778\pi\)
−0.433661 + 0.901076i \(0.642778\pi\)
\(240\) 0 0
\(241\) −1.21094e6 −1.34301 −0.671505 0.741000i \(-0.734352\pi\)
−0.671505 + 0.741000i \(0.734352\pi\)
\(242\) 353264. 0.387758
\(243\) 0 0
\(244\) −399616. −0.429703
\(245\) −60025.0 −0.0638877
\(246\) 0 0
\(247\) 1.50195e6 1.56644
\(248\) 0 0
\(249\) 0 0
\(250\) −125000. −0.126491
\(251\) −278262. −0.278785 −0.139393 0.990237i \(-0.544515\pi\)
−0.139393 + 0.990237i \(0.544515\pi\)
\(252\) 0 0
\(253\) 749262. 0.735923
\(254\) 2.64554e6 2.57294
\(255\) 0 0
\(256\) 1.04858e6 1.00000
\(257\) 352998. 0.333380 0.166690 0.986009i \(-0.446692\pi\)
0.166690 + 0.986009i \(0.446692\pi\)
\(258\) 0 0
\(259\) −539882. −0.500091
\(260\) 775200. 0.711181
\(261\) 0 0
\(262\) −351856. −0.316674
\(263\) 1.55809e6 1.38901 0.694503 0.719490i \(-0.255624\pi\)
0.694503 + 0.719490i \(0.255624\pi\)
\(264\) 0 0
\(265\) 648400. 0.567190
\(266\) −607600. −0.526519
\(267\) 0 0
\(268\) −507136. −0.431308
\(269\) 1.21963e6 1.02766 0.513828 0.857893i \(-0.328227\pi\)
0.513828 + 0.857893i \(0.328227\pi\)
\(270\) 0 0
\(271\) 405792. 0.335645 0.167823 0.985817i \(-0.446326\pi\)
0.167823 + 0.985817i \(0.446326\pi\)
\(272\) 1.67629e6 1.37381
\(273\) 0 0
\(274\) 797984. 0.642122
\(275\) 283125. 0.225760
\(276\) 0 0
\(277\) 652442. 0.510908 0.255454 0.966821i \(-0.417775\pi\)
0.255454 + 0.966821i \(0.417775\pi\)
\(278\) 2.07144e6 1.60753
\(279\) 0 0
\(280\) 0 0
\(281\) −118827. −0.0897737 −0.0448869 0.998992i \(-0.514293\pi\)
−0.0448869 + 0.998992i \(0.514293\pi\)
\(282\) 0 0
\(283\) 1.48801e6 1.10443 0.552217 0.833700i \(-0.313782\pi\)
0.552217 + 0.833700i \(0.313782\pi\)
\(284\) −1.65734e6 −1.21932
\(285\) 0 0
\(286\) −3.51166e6 −2.53862
\(287\) 84672.0 0.0606785
\(288\) 0 0
\(289\) 1.25991e6 0.887351
\(290\) −997000. −0.696146
\(291\) 0 0
\(292\) 155072. 0.106433
\(293\) −1.89580e6 −1.29010 −0.645050 0.764140i \(-0.723164\pi\)
−0.645050 + 0.764140i \(0.723164\pi\)
\(294\) 0 0
\(295\) −114500. −0.0766038
\(296\) 0 0
\(297\) 0 0
\(298\) 3.98744e6 2.60108
\(299\) −1.60273e6 −1.03677
\(300\) 0 0
\(301\) −529886. −0.337106
\(302\) −1.96642e6 −1.24068
\(303\) 0 0
\(304\) 1.58720e6 0.985026
\(305\) 312200. 0.192169
\(306\) 0 0
\(307\) −821853. −0.497678 −0.248839 0.968545i \(-0.580049\pi\)
−0.248839 + 0.968545i \(0.580049\pi\)
\(308\) 710304. 0.426646
\(309\) 0 0
\(310\) −238400. −0.140897
\(311\) 2.09600e6 1.22882 0.614412 0.788985i \(-0.289393\pi\)
0.614412 + 0.788985i \(0.289393\pi\)
\(312\) 0 0
\(313\) 394571. 0.227648 0.113824 0.993501i \(-0.463690\pi\)
0.113824 + 0.993501i \(0.463690\pi\)
\(314\) −683824. −0.391399
\(315\) 0 0
\(316\) 2.00848e6 1.13149
\(317\) −321422. −0.179650 −0.0898250 0.995958i \(-0.528631\pi\)
−0.0898250 + 0.995958i \(0.528631\pi\)
\(318\) 0 0
\(319\) 2.25820e6 1.24247
\(320\) 819200. 0.447214
\(321\) 0 0
\(322\) 648368. 0.348483
\(323\) 2.53735e6 1.35324
\(324\) 0 0
\(325\) −605625. −0.318050
\(326\) 1.54421e6 0.804752
\(327\) 0 0
\(328\) 0 0
\(329\) −1.28561e6 −0.654818
\(330\) 0 0
\(331\) −2.23259e6 −1.12005 −0.560027 0.828475i \(-0.689209\pi\)
−0.560027 + 0.828475i \(0.689209\pi\)
\(332\) 756608. 0.376726
\(333\) 0 0
\(334\) 1.26226e6 0.619133
\(335\) 396200. 0.192887
\(336\) 0 0
\(337\) −3.65656e6 −1.75387 −0.876936 0.480608i \(-0.840416\pi\)
−0.876936 + 0.480608i \(0.840416\pi\)
\(338\) 4.54134e6 2.16218
\(339\) 0 0
\(340\) 1.30960e6 0.614386
\(341\) 539976. 0.251471
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 2.12527e6 0.954386
\(347\) 1.88962e6 0.842462 0.421231 0.906953i \(-0.361598\pi\)
0.421231 + 0.906953i \(0.361598\pi\)
\(348\) 0 0
\(349\) −2.69329e6 −1.18364 −0.591820 0.806070i \(-0.701590\pi\)
−0.591820 + 0.806070i \(0.701590\pi\)
\(350\) 245000. 0.106904
\(351\) 0 0
\(352\) −3.71098e6 −1.59636
\(353\) 1.57468e6 0.672598 0.336299 0.941755i \(-0.390825\pi\)
0.336299 + 0.941755i \(0.390825\pi\)
\(354\) 0 0
\(355\) 1.29480e6 0.545295
\(356\) 4.71360e6 1.97119
\(357\) 0 0
\(358\) −1.46928e6 −0.605894
\(359\) −4.05576e6 −1.66087 −0.830436 0.557114i \(-0.811909\pi\)
−0.830436 + 0.557114i \(0.811909\pi\)
\(360\) 0 0
\(361\) −73599.0 −0.0297238
\(362\) −5.08038e6 −2.03763
\(363\) 0 0
\(364\) −1.51939e6 −0.601058
\(365\) −121150. −0.0475983
\(366\) 0 0
\(367\) −4.90628e6 −1.90146 −0.950731 0.310018i \(-0.899665\pi\)
−0.950731 + 0.310018i \(0.899665\pi\)
\(368\) −1.69370e6 −0.651952
\(369\) 0 0
\(370\) 2.20360e6 0.836813
\(371\) −1.27086e6 −0.479363
\(372\) 0 0
\(373\) −3.45336e6 −1.28520 −0.642599 0.766202i \(-0.722144\pi\)
−0.642599 + 0.766202i \(0.722144\pi\)
\(374\) −5.93249e6 −2.19310
\(375\) 0 0
\(376\) 0 0
\(377\) −4.83046e6 −1.75039
\(378\) 0 0
\(379\) −4.23466e6 −1.51433 −0.757165 0.653224i \(-0.773416\pi\)
−0.757165 + 0.653224i \(0.773416\pi\)
\(380\) 1.24000e6 0.440517
\(381\) 0 0
\(382\) 1.81290e6 0.635648
\(383\) 1.86460e6 0.649516 0.324758 0.945797i \(-0.394717\pi\)
0.324758 + 0.945797i \(0.394717\pi\)
\(384\) 0 0
\(385\) −554925. −0.190802
\(386\) 371808. 0.127014
\(387\) 0 0
\(388\) −266976. −0.0900312
\(389\) 4.81502e6 1.61333 0.806666 0.591008i \(-0.201270\pi\)
0.806666 + 0.591008i \(0.201270\pi\)
\(390\) 0 0
\(391\) −2.70760e6 −0.895658
\(392\) 0 0
\(393\) 0 0
\(394\) −1.63978e6 −0.532162
\(395\) −1.56912e6 −0.506017
\(396\) 0 0
\(397\) 1.21376e6 0.386505 0.193253 0.981149i \(-0.438096\pi\)
0.193253 + 0.981149i \(0.438096\pi\)
\(398\) −7.62416e6 −2.41259
\(399\) 0 0
\(400\) −640000. −0.200000
\(401\) −5.90442e6 −1.83365 −0.916824 0.399291i \(-0.869256\pi\)
−0.916824 + 0.399291i \(0.869256\pi\)
\(402\) 0 0
\(403\) −1.15505e6 −0.354272
\(404\) 380096. 0.115862
\(405\) 0 0
\(406\) 1.95412e6 0.588351
\(407\) −4.99115e6 −1.49353
\(408\) 0 0
\(409\) 4.84289e6 1.43152 0.715758 0.698348i \(-0.246081\pi\)
0.715758 + 0.698348i \(0.246081\pi\)
\(410\) −345600. −0.101535
\(411\) 0 0
\(412\) −4.23805e6 −1.23005
\(413\) 224420. 0.0647420
\(414\) 0 0
\(415\) −591100. −0.168477
\(416\) 7.93805e6 2.24895
\(417\) 0 0
\(418\) −5.61720e6 −1.57246
\(419\) −270360. −0.0752328 −0.0376164 0.999292i \(-0.511977\pi\)
−0.0376164 + 0.999292i \(0.511977\pi\)
\(420\) 0 0
\(421\) 3.13648e6 0.862456 0.431228 0.902243i \(-0.358080\pi\)
0.431228 + 0.902243i \(0.358080\pi\)
\(422\) −1.78818e6 −0.488800
\(423\) 0 0
\(424\) 0 0
\(425\) −1.02312e6 −0.274762
\(426\) 0 0
\(427\) −611912. −0.162412
\(428\) −4.37894e6 −1.15547
\(429\) 0 0
\(430\) 2.16280e6 0.564086
\(431\) 1.87703e6 0.486719 0.243360 0.969936i \(-0.421750\pi\)
0.243360 + 0.969936i \(0.421750\pi\)
\(432\) 0 0
\(433\) 3.20357e6 0.821134 0.410567 0.911830i \(-0.365331\pi\)
0.410567 + 0.911830i \(0.365331\pi\)
\(434\) 467264. 0.119080
\(435\) 0 0
\(436\) 3.50352e6 0.882650
\(437\) −2.56370e6 −0.642190
\(438\) 0 0
\(439\) −6.27209e6 −1.55328 −0.776642 0.629942i \(-0.783079\pi\)
−0.776642 + 0.629942i \(0.783079\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.26900e7 3.08963
\(443\) −724986. −0.175517 −0.0877587 0.996142i \(-0.527970\pi\)
−0.0877587 + 0.996142i \(0.527970\pi\)
\(444\) 0 0
\(445\) −3.68250e6 −0.881541
\(446\) 8.11841e6 1.93256
\(447\) 0 0
\(448\) −1.60563e6 −0.377964
\(449\) 875985. 0.205060 0.102530 0.994730i \(-0.467306\pi\)
0.102530 + 0.994730i \(0.467306\pi\)
\(450\) 0 0
\(451\) 782784. 0.181218
\(452\) 6.42989e6 1.48033
\(453\) 0 0
\(454\) −7.99838e6 −1.82122
\(455\) 1.18702e6 0.268801
\(456\) 0 0
\(457\) −832668. −0.186501 −0.0932505 0.995643i \(-0.529726\pi\)
−0.0932505 + 0.995643i \(0.529726\pi\)
\(458\) −6.80896e6 −1.51676
\(459\) 0 0
\(460\) −1.32320e6 −0.291562
\(461\) −5.92115e6 −1.29764 −0.648820 0.760942i \(-0.724737\pi\)
−0.648820 + 0.760942i \(0.724737\pi\)
\(462\) 0 0
\(463\) 682776. 0.148022 0.0740109 0.997257i \(-0.476420\pi\)
0.0740109 + 0.997257i \(0.476420\pi\)
\(464\) −5.10464e6 −1.10070
\(465\) 0 0
\(466\) −8.74157e6 −1.86477
\(467\) 5.41667e6 1.14932 0.574659 0.818393i \(-0.305135\pi\)
0.574659 + 0.818393i \(0.305135\pi\)
\(468\) 0 0
\(469\) −776552. −0.163019
\(470\) 5.24740e6 1.09572
\(471\) 0 0
\(472\) 0 0
\(473\) −4.89874e6 −1.00677
\(474\) 0 0
\(475\) −968750. −0.197005
\(476\) −2.56682e6 −0.519251
\(477\) 0 0
\(478\) −6.12724e6 −1.22658
\(479\) −1.98599e6 −0.395493 −0.197746 0.980253i \(-0.563362\pi\)
−0.197746 + 0.980253i \(0.563362\pi\)
\(480\) 0 0
\(481\) 1.06764e7 2.10409
\(482\) −9.68750e6 −1.89930
\(483\) 0 0
\(484\) 1.41306e6 0.274186
\(485\) 208575. 0.0402632
\(486\) 0 0
\(487\) −1.06974e6 −0.204388 −0.102194 0.994764i \(-0.532586\pi\)
−0.102194 + 0.994764i \(0.532586\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −480200. −0.0903508
\(491\) −4.59246e6 −0.859689 −0.429844 0.902903i \(-0.641432\pi\)
−0.429844 + 0.902903i \(0.641432\pi\)
\(492\) 0 0
\(493\) −8.16045e6 −1.51216
\(494\) 1.20156e7 2.21528
\(495\) 0 0
\(496\) −1.22061e6 −0.222778
\(497\) −2.53781e6 −0.460859
\(498\) 0 0
\(499\) 1.96066e6 0.352492 0.176246 0.984346i \(-0.443605\pi\)
0.176246 + 0.984346i \(0.443605\pi\)
\(500\) −500000. −0.0894427
\(501\) 0 0
\(502\) −2.22610e6 −0.394262
\(503\) −3.51483e6 −0.619419 −0.309709 0.950831i \(-0.600232\pi\)
−0.309709 + 0.950831i \(0.600232\pi\)
\(504\) 0 0
\(505\) −296950. −0.0518149
\(506\) 5.99410e6 1.04075
\(507\) 0 0
\(508\) 1.05821e7 1.81934
\(509\) 1.45211e6 0.248431 0.124215 0.992255i \(-0.460359\pi\)
0.124215 + 0.992255i \(0.460359\pi\)
\(510\) 0 0
\(511\) 237454. 0.0402279
\(512\) 8.38861e6 1.41421
\(513\) 0 0
\(514\) 2.82398e6 0.471470
\(515\) 3.31098e6 0.550095
\(516\) 0 0
\(517\) −1.18854e7 −1.95563
\(518\) −4.31906e6 −0.707236
\(519\) 0 0
\(520\) 0 0
\(521\) 4.24240e6 0.684726 0.342363 0.939568i \(-0.388773\pi\)
0.342363 + 0.939568i \(0.388773\pi\)
\(522\) 0 0
\(523\) −7.56012e6 −1.20858 −0.604289 0.796765i \(-0.706543\pi\)
−0.604289 + 0.796765i \(0.706543\pi\)
\(524\) −1.40742e6 −0.223922
\(525\) 0 0
\(526\) 1.24648e7 1.96435
\(527\) −1.95130e6 −0.306054
\(528\) 0 0
\(529\) −3.70063e6 −0.574958
\(530\) 5.18720e6 0.802127
\(531\) 0 0
\(532\) −2.43040e6 −0.372305
\(533\) −1.67443e6 −0.255299
\(534\) 0 0
\(535\) 3.42105e6 0.516743
\(536\) 0 0
\(537\) 0 0
\(538\) 9.75704e6 1.45332
\(539\) 1.08765e6 0.161257
\(540\) 0 0
\(541\) 1.24065e6 0.182245 0.0911224 0.995840i \(-0.470955\pi\)
0.0911224 + 0.995840i \(0.470955\pi\)
\(542\) 3.24634e6 0.474674
\(543\) 0 0
\(544\) 1.34103e7 1.94286
\(545\) −2.73712e6 −0.394733
\(546\) 0 0
\(547\) −1.85057e6 −0.264446 −0.132223 0.991220i \(-0.542211\pi\)
−0.132223 + 0.991220i \(0.542211\pi\)
\(548\) 3.19194e6 0.454049
\(549\) 0 0
\(550\) 2.26500e6 0.319272
\(551\) −7.72675e6 −1.08422
\(552\) 0 0
\(553\) 3.07548e6 0.427662
\(554\) 5.21954e6 0.722533
\(555\) 0 0
\(556\) 8.28576e6 1.13670
\(557\) −7.77555e6 −1.06192 −0.530962 0.847396i \(-0.678169\pi\)
−0.530962 + 0.847396i \(0.678169\pi\)
\(558\) 0 0
\(559\) 1.04788e7 1.41834
\(560\) 1.25440e6 0.169031
\(561\) 0 0
\(562\) −950616. −0.126959
\(563\) −8.37716e6 −1.11385 −0.556924 0.830564i \(-0.688018\pi\)
−0.556924 + 0.830564i \(0.688018\pi\)
\(564\) 0 0
\(565\) −5.02335e6 −0.662022
\(566\) 1.19041e7 1.56191
\(567\) 0 0
\(568\) 0 0
\(569\) 6.15591e6 0.797098 0.398549 0.917147i \(-0.369514\pi\)
0.398549 + 0.917147i \(0.369514\pi\)
\(570\) 0 0
\(571\) 7.21513e6 0.926092 0.463046 0.886334i \(-0.346757\pi\)
0.463046 + 0.886334i \(0.346757\pi\)
\(572\) −1.40466e7 −1.79507
\(573\) 0 0
\(574\) 677376. 0.0858124
\(575\) 1.03375e6 0.130390
\(576\) 0 0
\(577\) 1.36699e7 1.70933 0.854666 0.519177i \(-0.173762\pi\)
0.854666 + 0.519177i \(0.173762\pi\)
\(578\) 1.00793e7 1.25490
\(579\) 0 0
\(580\) −3.98800e6 −0.492249
\(581\) 1.15856e6 0.142389
\(582\) 0 0
\(583\) −1.17490e7 −1.43163
\(584\) 0 0
\(585\) 0 0
\(586\) −1.51664e7 −1.82448
\(587\) 1.00686e7 1.20608 0.603040 0.797711i \(-0.293956\pi\)
0.603040 + 0.797711i \(0.293956\pi\)
\(588\) 0 0
\(589\) −1.84760e6 −0.219442
\(590\) −916000. −0.108334
\(591\) 0 0
\(592\) 1.12824e7 1.32312
\(593\) −9.80615e6 −1.14515 −0.572574 0.819853i \(-0.694055\pi\)
−0.572574 + 0.819853i \(0.694055\pi\)
\(594\) 0 0
\(595\) 2.00532e6 0.232216
\(596\) 1.59498e7 1.83924
\(597\) 0 0
\(598\) −1.28218e7 −1.46621
\(599\) −8.26257e6 −0.940911 −0.470455 0.882424i \(-0.655910\pi\)
−0.470455 + 0.882424i \(0.655910\pi\)
\(600\) 0 0
\(601\) −3.59492e6 −0.405978 −0.202989 0.979181i \(-0.565066\pi\)
−0.202989 + 0.979181i \(0.565066\pi\)
\(602\) −4.23909e6 −0.476740
\(603\) 0 0
\(604\) −7.86570e6 −0.877293
\(605\) −1.10395e6 −0.122620
\(606\) 0 0
\(607\) −1.32969e7 −1.46480 −0.732401 0.680873i \(-0.761600\pi\)
−0.732401 + 0.680873i \(0.761600\pi\)
\(608\) 1.26976e7 1.39304
\(609\) 0 0
\(610\) 2.49760e6 0.271768
\(611\) 2.54237e7 2.75508
\(612\) 0 0
\(613\) 2.50327e6 0.269064 0.134532 0.990909i \(-0.457047\pi\)
0.134532 + 0.990909i \(0.457047\pi\)
\(614\) −6.57482e6 −0.703823
\(615\) 0 0
\(616\) 0 0
\(617\) −1.88254e6 −0.199082 −0.0995409 0.995033i \(-0.531737\pi\)
−0.0995409 + 0.995033i \(0.531737\pi\)
\(618\) 0 0
\(619\) 8.21487e6 0.861736 0.430868 0.902415i \(-0.358208\pi\)
0.430868 + 0.902415i \(0.358208\pi\)
\(620\) −953600. −0.0996293
\(621\) 0 0
\(622\) 1.67680e7 1.73782
\(623\) 7.21770e6 0.745038
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 3.15657e6 0.321943
\(627\) 0 0
\(628\) −2.73530e6 −0.276761
\(629\) 1.80365e7 1.81771
\(630\) 0 0
\(631\) 1.61155e7 1.61128 0.805638 0.592408i \(-0.201823\pi\)
0.805638 + 0.592408i \(0.201823\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −2.57138e6 −0.254064
\(635\) −8.26730e6 −0.813635
\(636\) 0 0
\(637\) −2.32657e6 −0.227179
\(638\) 1.80656e7 1.75712
\(639\) 0 0
\(640\) 0 0
\(641\) 8.50544e6 0.817620 0.408810 0.912619i \(-0.365944\pi\)
0.408810 + 0.912619i \(0.365944\pi\)
\(642\) 0 0
\(643\) −1.32191e7 −1.26088 −0.630440 0.776238i \(-0.717126\pi\)
−0.630440 + 0.776238i \(0.717126\pi\)
\(644\) 2.59347e6 0.246415
\(645\) 0 0
\(646\) 2.02988e7 1.91377
\(647\) −1.89115e6 −0.177609 −0.0888047 0.996049i \(-0.528305\pi\)
−0.0888047 + 0.996049i \(0.528305\pi\)
\(648\) 0 0
\(649\) 2.07474e6 0.193353
\(650\) −4.84500e6 −0.449791
\(651\) 0 0
\(652\) 6.17683e6 0.569045
\(653\) −4.90587e6 −0.450228 −0.225114 0.974332i \(-0.572275\pi\)
−0.225114 + 0.974332i \(0.572275\pi\)
\(654\) 0 0
\(655\) 1.09955e6 0.100141
\(656\) −1.76947e6 −0.160540
\(657\) 0 0
\(658\) −1.02849e7 −0.926052
\(659\) −1.36367e7 −1.22319 −0.611597 0.791169i \(-0.709473\pi\)
−0.611597 + 0.791169i \(0.709473\pi\)
\(660\) 0 0
\(661\) −2.22345e6 −0.197935 −0.0989677 0.995091i \(-0.531554\pi\)
−0.0989677 + 0.995091i \(0.531554\pi\)
\(662\) −1.78607e7 −1.58399
\(663\) 0 0
\(664\) 0 0
\(665\) 1.89875e6 0.166500
\(666\) 0 0
\(667\) 8.24519e6 0.717606
\(668\) 5.04906e6 0.437793
\(669\) 0 0
\(670\) 3.16960e6 0.272783
\(671\) −5.65706e6 −0.485048
\(672\) 0 0
\(673\) 4.88484e6 0.415731 0.207865 0.978157i \(-0.433348\pi\)
0.207865 + 0.978157i \(0.433348\pi\)
\(674\) −2.92525e7 −2.48035
\(675\) 0 0
\(676\) 1.81654e7 1.52889
\(677\) 1.98785e7 1.66691 0.833453 0.552590i \(-0.186360\pi\)
0.833453 + 0.552590i \(0.186360\pi\)
\(678\) 0 0
\(679\) −408807. −0.0340286
\(680\) 0 0
\(681\) 0 0
\(682\) 4.31981e6 0.355634
\(683\) −4.27870e6 −0.350962 −0.175481 0.984483i \(-0.556148\pi\)
−0.175481 + 0.984483i \(0.556148\pi\)
\(684\) 0 0
\(685\) −2.49370e6 −0.203057
\(686\) 941192. 0.0763604
\(687\) 0 0
\(688\) 1.10735e7 0.891898
\(689\) 2.51320e7 2.01687
\(690\) 0 0
\(691\) 9.48925e6 0.756026 0.378013 0.925800i \(-0.376607\pi\)
0.378013 + 0.925800i \(0.376607\pi\)
\(692\) 8.50109e6 0.674853
\(693\) 0 0
\(694\) 1.51169e7 1.19142
\(695\) −6.47325e6 −0.508347
\(696\) 0 0
\(697\) −2.82874e6 −0.220552
\(698\) −2.15463e7 −1.67392
\(699\) 0 0
\(700\) 980000. 0.0755929
\(701\) 5.86385e6 0.450700 0.225350 0.974278i \(-0.427647\pi\)
0.225350 + 0.974278i \(0.427647\pi\)
\(702\) 0 0
\(703\) 1.70779e7 1.30331
\(704\) −1.48439e7 −1.12880
\(705\) 0 0
\(706\) 1.25974e7 0.951197
\(707\) 582022. 0.0437916
\(708\) 0 0
\(709\) −2.66670e6 −0.199232 −0.0996161 0.995026i \(-0.531761\pi\)
−0.0996161 + 0.995026i \(0.531761\pi\)
\(710\) 1.03584e7 0.771164
\(711\) 0 0
\(712\) 0 0
\(713\) 1.97157e6 0.145241
\(714\) 0 0
\(715\) 1.09739e7 0.802781
\(716\) −5.87712e6 −0.428432
\(717\) 0 0
\(718\) −3.24461e7 −2.34883
\(719\) 4.46629e6 0.322199 0.161100 0.986938i \(-0.448496\pi\)
0.161100 + 0.986938i \(0.448496\pi\)
\(720\) 0 0
\(721\) −6.48951e6 −0.464915
\(722\) −588792. −0.0420358
\(723\) 0 0
\(724\) −2.03215e7 −1.44082
\(725\) 3.11562e6 0.220141
\(726\) 0 0
\(727\) −7.47757e6 −0.524716 −0.262358 0.964971i \(-0.584500\pi\)
−0.262358 + 0.964971i \(0.584500\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −969200. −0.0673141
\(731\) 1.77025e7 1.22530
\(732\) 0 0
\(733\) −4.39751e6 −0.302306 −0.151153 0.988510i \(-0.548299\pi\)
−0.151153 + 0.988510i \(0.548299\pi\)
\(734\) −3.92503e7 −2.68907
\(735\) 0 0
\(736\) −1.35496e7 −0.922000
\(737\) −7.17914e6 −0.486860
\(738\) 0 0
\(739\) 2.84036e7 1.91321 0.956603 0.291395i \(-0.0941195\pi\)
0.956603 + 0.291395i \(0.0941195\pi\)
\(740\) 8.81440e6 0.591716
\(741\) 0 0
\(742\) −1.01669e7 −0.677921
\(743\) 1.96012e7 1.30260 0.651299 0.758821i \(-0.274224\pi\)
0.651299 + 0.758821i \(0.274224\pi\)
\(744\) 0 0
\(745\) −1.24608e7 −0.822533
\(746\) −2.76269e7 −1.81755
\(747\) 0 0
\(748\) −2.37300e7 −1.55075
\(749\) −6.70526e6 −0.436728
\(750\) 0 0
\(751\) −2.60344e6 −0.168441 −0.0842206 0.996447i \(-0.526840\pi\)
−0.0842206 + 0.996447i \(0.526840\pi\)
\(752\) 2.68667e7 1.73249
\(753\) 0 0
\(754\) −3.86437e7 −2.47543
\(755\) 6.14508e6 0.392337
\(756\) 0 0
\(757\) −2.98869e7 −1.89558 −0.947789 0.318899i \(-0.896687\pi\)
−0.947789 + 0.318899i \(0.896687\pi\)
\(758\) −3.38773e7 −2.14159
\(759\) 0 0
\(760\) 0 0
\(761\) −1.21470e7 −0.760338 −0.380169 0.924917i \(-0.624134\pi\)
−0.380169 + 0.924917i \(0.624134\pi\)
\(762\) 0 0
\(763\) 5.36476e6 0.333610
\(764\) 7.25162e6 0.449471
\(765\) 0 0
\(766\) 1.49168e7 0.918554
\(767\) −4.43802e6 −0.272396
\(768\) 0 0
\(769\) 4.53845e6 0.276753 0.138376 0.990380i \(-0.455812\pi\)
0.138376 + 0.990380i \(0.455812\pi\)
\(770\) −4.43940e6 −0.269834
\(771\) 0 0
\(772\) 1.48723e6 0.0898122
\(773\) −1.93330e7 −1.16372 −0.581861 0.813288i \(-0.697675\pi\)
−0.581861 + 0.813288i \(0.697675\pi\)
\(774\) 0 0
\(775\) 745000. 0.0445556
\(776\) 0 0
\(777\) 0 0
\(778\) 3.85201e7 2.28160
\(779\) −2.67840e6 −0.158136
\(780\) 0 0
\(781\) −2.34618e7 −1.37636
\(782\) −2.16608e7 −1.26665
\(783\) 0 0
\(784\) −2.45862e6 −0.142857
\(785\) 2.13695e6 0.123771
\(786\) 0 0
\(787\) 1.66392e7 0.957627 0.478814 0.877917i \(-0.341067\pi\)
0.478814 + 0.877917i \(0.341067\pi\)
\(788\) −6.55910e6 −0.376295
\(789\) 0 0
\(790\) −1.25530e7 −0.715616
\(791\) 9.84577e6 0.559511
\(792\) 0 0
\(793\) 1.21009e7 0.683335
\(794\) 9.71006e6 0.546601
\(795\) 0 0
\(796\) −3.04966e7 −1.70596
\(797\) −1.80409e7 −1.00603 −0.503017 0.864276i \(-0.667777\pi\)
−0.503017 + 0.864276i \(0.667777\pi\)
\(798\) 0 0
\(799\) 4.29500e7 2.38010
\(800\) −5.12000e6 −0.282843
\(801\) 0 0
\(802\) −4.72353e7 −2.59317
\(803\) 2.19524e6 0.120141
\(804\) 0 0
\(805\) −2.02615e6 −0.110200
\(806\) −9.24038e6 −0.501017
\(807\) 0 0
\(808\) 0 0
\(809\) −2.33891e7 −1.25644 −0.628220 0.778036i \(-0.716216\pi\)
−0.628220 + 0.778036i \(0.716216\pi\)
\(810\) 0 0
\(811\) −2.29037e7 −1.22279 −0.611397 0.791324i \(-0.709392\pi\)
−0.611397 + 0.791324i \(0.709392\pi\)
\(812\) 7.81648e6 0.416027
\(813\) 0 0
\(814\) −3.99292e7 −2.11218
\(815\) −4.82565e6 −0.254485
\(816\) 0 0
\(817\) 1.67617e7 0.878543
\(818\) 3.87431e7 2.02447
\(819\) 0 0
\(820\) −1.38240e6 −0.0717958
\(821\) 1.80745e7 0.935853 0.467926 0.883767i \(-0.345001\pi\)
0.467926 + 0.883767i \(0.345001\pi\)
\(822\) 0 0
\(823\) 1.17989e7 0.607216 0.303608 0.952797i \(-0.401809\pi\)
0.303608 + 0.952797i \(0.401809\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 1.79536e6 0.0915591
\(827\) −2.57650e6 −0.130999 −0.0654993 0.997853i \(-0.520864\pi\)
−0.0654993 + 0.997853i \(0.520864\pi\)
\(828\) 0 0
\(829\) −3.84340e7 −1.94236 −0.971178 0.238356i \(-0.923392\pi\)
−0.971178 + 0.238356i \(0.923392\pi\)
\(830\) −4.72880e6 −0.238263
\(831\) 0 0
\(832\) 3.17522e7 1.59025
\(833\) −3.93044e6 −0.196258
\(834\) 0 0
\(835\) −3.94458e6 −0.195787
\(836\) −2.24688e7 −1.11190
\(837\) 0 0
\(838\) −2.16288e6 −0.106395
\(839\) 1.24222e7 0.609247 0.304623 0.952473i \(-0.401469\pi\)
0.304623 + 0.952473i \(0.401469\pi\)
\(840\) 0 0
\(841\) 4.33908e6 0.211547
\(842\) 2.50918e7 1.21970
\(843\) 0 0
\(844\) −7.15274e6 −0.345634
\(845\) −1.41917e7 −0.683743
\(846\) 0 0
\(847\) 2.16374e6 0.103633
\(848\) 2.65585e7 1.26827
\(849\) 0 0
\(850\) −8.18500e6 −0.388572
\(851\) −1.82238e7 −0.862610
\(852\) 0 0
\(853\) 7.92067e6 0.372726 0.186363 0.982481i \(-0.440330\pi\)
0.186363 + 0.982481i \(0.440330\pi\)
\(854\) −4.89530e6 −0.229686
\(855\) 0 0
\(856\) 0 0
\(857\) −1.48983e7 −0.692924 −0.346462 0.938064i \(-0.612617\pi\)
−0.346462 + 0.938064i \(0.612617\pi\)
\(858\) 0 0
\(859\) −1.38740e7 −0.641534 −0.320767 0.947158i \(-0.603941\pi\)
−0.320767 + 0.947158i \(0.603941\pi\)
\(860\) 8.65120e6 0.398869
\(861\) 0 0
\(862\) 1.50163e7 0.688325
\(863\) −1.25500e7 −0.573610 −0.286805 0.957989i \(-0.592593\pi\)
−0.286805 + 0.957989i \(0.592593\pi\)
\(864\) 0 0
\(865\) −6.64147e6 −0.301804
\(866\) 2.56285e7 1.16126
\(867\) 0 0
\(868\) 1.86906e6 0.0842021
\(869\) 2.84325e7 1.27722
\(870\) 0 0
\(871\) 1.53567e7 0.685887
\(872\) 0 0
\(873\) 0 0
\(874\) −2.05096e7 −0.908194
\(875\) −765625. −0.0338062
\(876\) 0 0
\(877\) −2.86002e7 −1.25565 −0.627827 0.778353i \(-0.716056\pi\)
−0.627827 + 0.778353i \(0.716056\pi\)
\(878\) −5.01767e7 −2.19668
\(879\) 0 0
\(880\) 1.15968e7 0.504814
\(881\) −4.09608e7 −1.77799 −0.888993 0.457922i \(-0.848594\pi\)
−0.888993 + 0.457922i \(0.848594\pi\)
\(882\) 0 0
\(883\) 1.30504e7 0.563279 0.281639 0.959520i \(-0.409122\pi\)
0.281639 + 0.959520i \(0.409122\pi\)
\(884\) 5.07601e7 2.18470
\(885\) 0 0
\(886\) −5.79989e6 −0.248219
\(887\) −2.53595e7 −1.08226 −0.541129 0.840939i \(-0.682003\pi\)
−0.541129 + 0.840939i \(0.682003\pi\)
\(888\) 0 0
\(889\) 1.62039e7 0.687647
\(890\) −2.94600e7 −1.24669
\(891\) 0 0
\(892\) 3.24736e7 1.36653
\(893\) 4.06674e7 1.70654
\(894\) 0 0
\(895\) 4.59150e6 0.191601
\(896\) 0 0
\(897\) 0 0
\(898\) 7.00788e6 0.289999
\(899\) 5.94212e6 0.245212
\(900\) 0 0
\(901\) 4.24572e7 1.74237
\(902\) 6.26227e6 0.256281
\(903\) 0 0
\(904\) 0 0
\(905\) 1.58762e7 0.644355
\(906\) 0 0
\(907\) 1.98595e7 0.801585 0.400793 0.916169i \(-0.368735\pi\)
0.400793 + 0.916169i \(0.368735\pi\)
\(908\) −3.19935e7 −1.28780
\(909\) 0 0
\(910\) 9.49620e6 0.380142
\(911\) 1.99344e7 0.795808 0.397904 0.917427i \(-0.369738\pi\)
0.397904 + 0.917427i \(0.369738\pi\)
\(912\) 0 0
\(913\) 1.07107e7 0.425248
\(914\) −6.66134e6 −0.263752
\(915\) 0 0
\(916\) −2.72358e7 −1.07251
\(917\) −2.15512e6 −0.0846346
\(918\) 0 0
\(919\) −1.10695e7 −0.432355 −0.216178 0.976354i \(-0.569359\pi\)
−0.216178 + 0.976354i \(0.569359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −4.73692e7 −1.83514
\(923\) 5.01864e7 1.93902
\(924\) 0 0
\(925\) −6.88625e6 −0.264624
\(926\) 5.46221e6 0.209334
\(927\) 0 0
\(928\) −4.08371e7 −1.55663
\(929\) 3.25682e7 1.23810 0.619048 0.785353i \(-0.287519\pi\)
0.619048 + 0.785353i \(0.287519\pi\)
\(930\) 0 0
\(931\) −3.72155e6 −0.140718
\(932\) −3.49663e7 −1.31859
\(933\) 0 0
\(934\) 4.33334e7 1.62538
\(935\) 1.85390e7 0.693518
\(936\) 0 0
\(937\) 3.15690e7 1.17466 0.587329 0.809348i \(-0.300179\pi\)
0.587329 + 0.809348i \(0.300179\pi\)
\(938\) −6.21242e6 −0.230544
\(939\) 0 0
\(940\) 2.09896e7 0.774791
\(941\) 3.67997e7 1.35479 0.677393 0.735622i \(-0.263110\pi\)
0.677393 + 0.735622i \(0.263110\pi\)
\(942\) 0 0
\(943\) 2.85811e6 0.104665
\(944\) −4.68992e6 −0.171291
\(945\) 0 0
\(946\) −3.91899e7 −1.42379
\(947\) −1.88453e7 −0.682853 −0.341426 0.939909i \(-0.610910\pi\)
−0.341426 + 0.939909i \(0.610910\pi\)
\(948\) 0 0
\(949\) −4.69577e6 −0.169255
\(950\) −7.75000e6 −0.278607
\(951\) 0 0
\(952\) 0 0
\(953\) 1.25120e7 0.446265 0.223133 0.974788i \(-0.428372\pi\)
0.223133 + 0.974788i \(0.428372\pi\)
\(954\) 0 0
\(955\) −5.66532e6 −0.201009
\(956\) −2.45090e7 −0.867322
\(957\) 0 0
\(958\) −1.58879e7 −0.559311
\(959\) 4.88765e6 0.171614
\(960\) 0 0
\(961\) −2.72083e7 −0.950370
\(962\) 8.54115e7 2.97563
\(963\) 0 0
\(964\) −3.87500e7 −1.34301
\(965\) −1.16190e6 −0.0401652
\(966\) 0 0
\(967\) −3.42344e7 −1.17733 −0.588663 0.808379i \(-0.700346\pi\)
−0.588663 + 0.808379i \(0.700346\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 1.66860e6 0.0569407
\(971\) 2.62027e7 0.891864 0.445932 0.895067i \(-0.352872\pi\)
0.445932 + 0.895067i \(0.352872\pi\)
\(972\) 0 0
\(973\) 1.26876e7 0.429632
\(974\) −8.55790e6 −0.289048
\(975\) 0 0
\(976\) 1.27877e7 0.429703
\(977\) 8.01114e6 0.268508 0.134254 0.990947i \(-0.457136\pi\)
0.134254 + 0.990947i \(0.457136\pi\)
\(978\) 0 0
\(979\) 6.67269e7 2.22507
\(980\) −1.92080e6 −0.0638877
\(981\) 0 0
\(982\) −3.67397e7 −1.21578
\(983\) 4.60126e7 1.51877 0.759387 0.650639i \(-0.225499\pi\)
0.759387 + 0.650639i \(0.225499\pi\)
\(984\) 0 0
\(985\) 5.12430e6 0.168284
\(986\) −6.52836e7 −2.13851
\(987\) 0 0
\(988\) 4.80624e7 1.56644
\(989\) −1.78864e7 −0.581475
\(990\) 0 0
\(991\) −3.75828e7 −1.21564 −0.607821 0.794074i \(-0.707956\pi\)
−0.607821 + 0.794074i \(0.707956\pi\)
\(992\) −9.76486e6 −0.315055
\(993\) 0 0
\(994\) −2.03025e7 −0.651753
\(995\) 2.38255e7 0.762929
\(996\) 0 0
\(997\) 2.22066e7 0.707529 0.353765 0.935334i \(-0.384901\pi\)
0.353765 + 0.935334i \(0.384901\pi\)
\(998\) 1.56852e7 0.498500
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.6.a.a.1.1 1
3.2 odd 2 35.6.a.a.1.1 1
12.11 even 2 560.6.a.c.1.1 1
15.2 even 4 175.6.b.b.99.1 2
15.8 even 4 175.6.b.b.99.2 2
15.14 odd 2 175.6.a.a.1.1 1
21.20 even 2 245.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.a.1.1 1 3.2 odd 2
175.6.a.a.1.1 1 15.14 odd 2
175.6.b.b.99.1 2 15.2 even 4
175.6.b.b.99.2 2 15.8 even 4
245.6.a.a.1.1 1 21.20 even 2
315.6.a.a.1.1 1 1.1 even 1 trivial
560.6.a.c.1.1 1 12.11 even 2