Defining parameters
| Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 315.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(315))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 248 | 50 | 198 |
| Cusp forms | 232 | 50 | 182 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(28\) | \(6\) | \(22\) | \(26\) | \(6\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(32\) | \(4\) | \(28\) | \(30\) | \(4\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(34\) | \(6\) | \(28\) | \(32\) | \(6\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(30\) | \(4\) | \(26\) | \(28\) | \(4\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(31\) | \(8\) | \(23\) | \(29\) | \(8\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(31\) | \(7\) | \(24\) | \(29\) | \(7\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(31\) | \(6\) | \(25\) | \(29\) | \(6\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(31\) | \(9\) | \(22\) | \(29\) | \(9\) | \(20\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(120\) | \(23\) | \(97\) | \(112\) | \(23\) | \(89\) | \(8\) | \(0\) | \(8\) | |||||
| Minus space | \(-\) | \(128\) | \(27\) | \(101\) | \(120\) | \(27\) | \(93\) | \(8\) | \(0\) | \(8\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(315))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(315))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(315)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)