Properties

Label 315.6.a
Level $315$
Weight $6$
Character orbit 315.a
Rep. character $\chi_{315}(1,\cdot)$
Character field $\Q$
Dimension $50$
Newform subspaces $16$
Sturm bound $288$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(288\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(315))\).

Total New Old
Modular forms 248 50 198
Cusp forms 232 50 182
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(28\)\(6\)\(22\)\(26\)\(6\)\(20\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(32\)\(4\)\(28\)\(30\)\(4\)\(26\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(34\)\(6\)\(28\)\(32\)\(6\)\(26\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(30\)\(4\)\(26\)\(28\)\(4\)\(24\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(31\)\(8\)\(23\)\(29\)\(8\)\(21\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(31\)\(7\)\(24\)\(29\)\(7\)\(22\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(31\)\(6\)\(25\)\(29\)\(6\)\(23\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(31\)\(9\)\(22\)\(29\)\(9\)\(20\)\(2\)\(0\)\(2\)
Plus space\(+\)\(120\)\(23\)\(97\)\(112\)\(23\)\(89\)\(8\)\(0\)\(8\)
Minus space\(-\)\(128\)\(27\)\(101\)\(120\)\(27\)\(93\)\(8\)\(0\)\(8\)

Trace form

\( 50 q + 10 q^{2} + 842 q^{4} - 98 q^{7} - 582 q^{8} - 100 q^{10} + 974 q^{11} + 404 q^{13} - 1078 q^{14} + 14946 q^{16} - 2524 q^{17} - 3864 q^{19} - 460 q^{22} + 7448 q^{23} + 31250 q^{25} + 14436 q^{26}+ \cdots + 24010 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(315))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 7
315.6.a.a 315.a 1.a $1$ $50.521$ \(\Q\) None 35.6.a.a \(8\) \(0\) \(-25\) \(49\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{5}q^{4}-5^{2}q^{5}+7^{2}q^{7}-200q^{10}+\cdots\)
315.6.a.b 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{65}) \) None 105.6.a.f \(-3\) \(0\) \(-50\) \(98\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}+(-15+3\beta )q^{4}-5^{2}q^{5}+\cdots\)
315.6.a.c 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{65}) \) None 35.6.a.b \(-1\) \(0\) \(50\) \(-98\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-2^{4}+\beta )q^{4}+5^{2}q^{5}-7^{2}q^{7}+\cdots\)
315.6.a.d 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{233}) \) None 105.6.a.e \(-1\) \(0\) \(50\) \(-98\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(26+\beta )q^{4}+5^{2}q^{5}-7^{2}q^{7}+\cdots\)
315.6.a.e 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{73}) \) None 105.6.a.d \(1\) \(0\) \(50\) \(98\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-14+\beta )q^{4}+5^{2}q^{5}+7^{2}q^{7}+\cdots\)
315.6.a.f 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{2}) \) None 105.6.a.c \(4\) \(0\) \(-50\) \(-98\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{2}+(4+4\beta )q^{4}-5^{2}q^{5}-7^{2}q^{7}+\cdots\)
315.6.a.g 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{5}) \) None 105.6.a.b \(8\) \(0\) \(50\) \(-98\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{2}+(4+8\beta )q^{4}+5^{2}q^{5}-7^{2}q^{7}+\cdots\)
315.6.a.h 315.a 1.a $2$ $50.521$ \(\Q(\sqrt{65}) \) None 105.6.a.a \(13\) \(0\) \(-50\) \(-98\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(7-\beta )q^{2}+(33-13\beta )q^{4}-5^{2}q^{5}+\cdots\)
315.6.a.i 315.a 1.a $3$ $50.521$ 3.3.577880.1 None 35.6.a.c \(6\) \(0\) \(75\) \(147\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(38+2\beta _{2})q^{4}+5^{2}q^{5}+\cdots\)
315.6.a.j 315.a 1.a $4$ $50.521$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.6.a.h \(-10\) \(0\) \(-100\) \(196\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+(30-3\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.6.a.k 315.a 1.a $4$ $50.521$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 105.6.a.g \(-8\) \(0\) \(100\) \(196\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(29-\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.6.a.l 315.a 1.a $4$ $50.521$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 35.6.a.d \(-7\) \(0\) \(-100\) \(-196\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(13-4\beta _{1}+\beta _{2})q^{4}+\cdots\)
315.6.a.m 315.a 1.a $4$ $50.521$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 315.6.a.m \(-5\) \(0\) \(100\) \(196\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+(11+2\beta _{1}+\beta _{3})q^{4}+\cdots\)
315.6.a.n 315.a 1.a $4$ $50.521$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 315.6.a.m \(5\) \(0\) \(-100\) \(196\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(11+2\beta _{1}+\beta _{3})q^{4}+\cdots\)
315.6.a.o 315.a 1.a $6$ $50.521$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 315.6.a.o \(-3\) \(0\) \(-150\) \(-294\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(5^{2}+\beta _{2})q^{4}-5^{2}q^{5}+\cdots\)
315.6.a.p 315.a 1.a $6$ $50.521$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 315.6.a.o \(3\) \(0\) \(150\) \(-294\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(5^{2}+\beta _{2})q^{4}+5^{2}q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(315))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(315)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)